Abstract:Large Language Models (LLMs) are pretrained on extensive multilingual corpora to acquire both language-specific cultural knowledge and general knowledge. Ideally, while LLMs should provide consistent responses to culture-independent questions across languages, we observe significant performance disparities. To address this, we explore the Cross-Lingual Self-Aligning ability of Language Models (CALM) to align knowledge across languages. Specifically, for a given question, we sample multiple responses across different languages, and select the most self-consistent response as the target, leaving the remaining responses as negative examples. We then employ direct preference optimization (DPO) to align the model's knowledge across different languages. Evaluations on the MEDQA and X-CSQA datasets demonstrate CALM's effectiveness in enhancing cross-lingual knowledge question answering, both in zero-shot and retrieval augmented settings. We also found that increasing the number of languages involved in CALM training leads to even higher accuracy and consistency. We offer a qualitative analysis of how cross-lingual consistency can enhance knowledge alignment and explore the method's generalizability. The source code and data of this paper are available on GitHub.
Abstract:The evaluation paradigm of LLM-as-judge gains popularity due to its significant reduction in human labor and time costs. This approach utilizes one or more large language models (LLMs) to assess the quality of outputs from other LLMs. However, existing methods rely on generic scoring rubrics that fail to consider the specificities of each question and its problem-solving process, compromising precision and stability in assessments. Inspired by human examination scoring processes, we propose a new evaluation paradigm based on self-adaptive rubrics. Specifically, we create detailed scoring rubrics for each question, capturing the primary and secondary criteria in a structured format of scoring and deduction points that mimic a human evaluator's analytical process. Building on this paradigm, we further develop a novel benchmark called SedarEval, which covers a range of domains including long-tail knowledge, mathematics, coding, and logical reasoning. SedarEval consists of 1,000 meticulously crafted questions, each with its own self-adaptive rubric. To further streamline the evaluation, we train a specialized evaluator language model (evaluator LM) to supplant human graders. Using the same training data, our evaluator LM achieves a higher concordance rate with human grading results than other paradigms, including GPT-4, highlighting the superiority and efficiency of our approach. We release our dataset at https://github.com/wwn1233/sedareval.
Abstract:Contemporary Text-to-Image (T2I) models frequently depend on qualitative human evaluations to assess the consistency between synthesized images and the text prompts. There is a demand for quantitative and automatic evaluation tools, given that human evaluation lacks reproducibility. We believe that an effective T2I evaluation metric should accomplish the following: detect instances where the generated images do not align with the textual prompts, a discrepancy we define as the `hallucination problem' in T2I tasks; record the types and frequency of hallucination issues, aiding users in understanding the causes of errors; and provide a comprehensive and intuitive scoring that close to human standard. To achieve these objectives, we propose a method based on large language models (LLMs) for conducting question-answering with an extracted scene-graph and created a dataset with human-rated scores for generated images. From the methodology perspective, we combine knowledge-enhanced question-answering tasks with image evaluation tasks, making the evaluation metrics more controllable and easier to interpret. For the contribution on the dataset side, we generated 12,000 synthesized images based on 1,000 composited prompts using three advanced T2I models. Subsequently, we conduct human scoring on all synthesized images and prompt pairs to validate the accuracy and effectiveness of our method as an evaluation metric. All generated images and the human-labeled scores will be made publicly available in the future to facilitate ongoing research on this crucial issue. Extensive experiments show that our method aligns more closely with human scoring patterns than other evaluation metrics.
Abstract:The advanced role-playing capabilities of Large Language Models (LLMs) have paved the way for developing Role-Playing Agents (RPAs). However, existing benchmarks, such as HPD, which incorporates manually scored character relationships into the context for LLMs to sort coherence, and SocialBench, which uses specific profiles generated by LLMs in the context of multiple-choice tasks to assess character preferences, face limitations like poor generalizability, implicit and inaccurate judgments, and excessive context length. To address the above issues, we propose an automatic, scalable, and generalizable paradigm. Specifically, we construct a benchmark by extracting relations from a general knowledge graph and leverage RPA's inherent hallucination properties to prompt it to interact across roles, employing ChatGPT for stance detection and defining relationship hallucination along with three related metrics. Extensive experiments validate the effectiveness and stability of our metrics. Our findings further explore factors influencing these metrics and discuss the trade-off between relationship hallucination and factuality.
Abstract:First-order methods (FOMs) are arguably the most scalable algorithms for equilibrium computation in large extensive-form games. To operationalize these methods, a distance-generating function, acting as a regularizer for the strategy space, must be chosen. The ratio between the strong convexity modulus and the diameter of the regularizer is a key parameter in the analysis of FOMs. A natural question is then: what is the optimal distance-generating function for extensive-form decision spaces? In this paper, we make a number of contributions, ultimately establishing that the weight-one dilated entropy (DilEnt) distance-generating function is optimal up to logarithmic factors. The DilEnt regularizer is notable due to its iterate-equivalence with Kernelized OMWU (KOMWU) -- the algorithm with state-of-the-art dependence on the game tree size in extensive-form games -- when used in conjunction with the online mirror descent (OMD) algorithm. However, the standard analysis for OMD is unable to establish such a result; the only current analysis is by appealing to the iterate equivalence to KOMWU. We close this gap by introducing a pair of primal-dual treeplex norms, which we contend form the natural analytic viewpoint for studying the strong convexity of DilEnt. Using these norm pairs, we recover the diameter-to-strong-convexity ratio that predicts the same performance as KOMWU. Along with a new regret lower bound for online learning in sequence-form strategy spaces, we show that this ratio is nearly optimal. Finally, we showcase our analytic techniques by refining the analysis of Clairvoyant OMD when paired with DilEnt, establishing an $\mathcal{O}(n \log |\mathcal{V}| \log T/T)$ approximation rate to coarse correlated equilibrium in $n$-player games, where $|\mathcal{V}|$ is the number of reduced normal-form strategies of the players, establishing the new state of the art.
Abstract:Artificial intelligence has significantly impacted medical applications, particularly with the advent of Medical Large Vision Language Models (Med-LVLMs), sparking optimism for the future of automated and personalized healthcare. However, the trustworthiness of Med-LVLMs remains unverified, posing significant risks for future model deployment. In this paper, we introduce CARES and aim to comprehensively evaluate the Trustworthiness of Med-LVLMs across the medical domain. We assess the trustworthiness of Med-LVLMs across five dimensions, including trustfulness, fairness, safety, privacy, and robustness. CARES comprises about 41K question-answer pairs in both closed and open-ended formats, covering 16 medical image modalities and 27 anatomical regions. Our analysis reveals that the models consistently exhibit concerns regarding trustworthiness, often displaying factual inaccuracies and failing to maintain fairness across different demographic groups. Furthermore, they are vulnerable to attacks and demonstrate a lack of privacy awareness. We publicly release our benchmark and code in https://github.com/richard-peng-xia/CARES.
Abstract:Large Vision-Language Models (LVLMs) have made substantial progress by integrating pre-trained large language models (LLMs) and vision models through instruction tuning. Despite these advancements, LVLMs often exhibit the hallucination phenomenon, where generated text responses appear linguistically plausible but contradict the input image, indicating a misalignment between image and text pairs. This misalignment arises because the model tends to prioritize textual information over visual input, even when both the language model and visual representations are of high quality. Existing methods leverage additional models or human annotations to curate preference data and enhance modality alignment through preference optimization. These approaches may not effectively reflect the target LVLM's preferences, making the curated preferences easily distinguishable. Our work addresses these challenges by proposing the Calibrated Self-Rewarding (CSR) approach, which enables the model to self-improve by iteratively generating candidate responses, evaluating the reward for each response, and curating preference data for fine-tuning. In the reward modeling, we employ a step-wise strategy and incorporate visual constraints into the self-rewarding process to place greater emphasis on visual input. Empirical results demonstrate that CSR enhances performance and reduces hallucinations across ten benchmarks and tasks, achieving substantial improvements over existing methods by 7.62%. Our empirical results are further supported by rigorous theoretical analysis, under mild assumptions, verifying the effectiveness of introducing visual constraints into the self-rewarding paradigm. Additionally, CSR shows compatibility with different vision-language models and the ability to incrementally improve performance through iterative fine-tuning. Our data and code are available at https://github.com/YiyangZhou/CSR.
Abstract:We study the constant regret guarantees in reinforcement learning (RL). Our objective is to design an algorithm that incurs only finite regret over infinite episodes with high probability. We introduce an algorithm, Cert-LSVI-UCB, for misspecified linear Markov decision processes (MDPs) where both the transition kernel and the reward function can be approximated by some linear function up to misspecification level $\zeta$. At the core of Cert-LSVI-UCB is an innovative certified estimator, which facilitates a fine-grained concentration analysis for multi-phase value-targeted regression, enabling us to establish an instance-dependent regret bound that is constant w.r.t. the number of episodes. Specifically, we demonstrate that for an MDP characterized by a minimal suboptimality gap $\Delta$, Cert-LSVI-UCB has a cumulative regret of $\tilde{\mathcal{O}}(d^3H^5/\Delta)$ with high probability, provided that the misspecification level $\zeta$ is below $\tilde{\mathcal{O}}(\Delta / (\sqrt{d}H^2))$. Remarkably, this regret bound remains constant relative to the number of episodes $K$. To the best of our knowledge, Cert-LSVI-UCB is the first algorithm to achieve a constant, instance-dependent, high-probability regret bound in RL with linear function approximation for infinite runs without relying on prior distribution assumptions. This not only highlights the robustness of Cert-LSVI-UCB to model misspecification but also introduces novel algorithmic designs and analytical techniques of independent interest.
Abstract:Open Information Extraction (OpenIE) is a fundamental yet challenging task in Natural Language Processing, which involves extracting all triples (subject, predicate, object) from a given sentence. While labeling-based methods have their merits, generation-based techniques offer unique advantages, such as the ability to generate tokens not present in the original sentence. However, these generation-based methods often require a significant amount of training data to learn the task form of OpenIE and substantial training time to overcome slow model convergence due to the order penalty. In this paper, we introduce a novel framework, OK-IE, that ingeniously transforms the task form of OpenIE into the pre-training task form of the T5 model, thereby reducing the need for extensive training data. Furthermore, we introduce an innovative concept of Anchor to control the sequence of model outputs, effectively eliminating the impact of order penalty on model convergence and significantly reducing training time. Experimental results indicate that, compared to previous SOTA methods, OK-IE requires only 1/100 of the training data (900 instances) and 1/120 of the training time (3 minutes) to achieve comparable results.
Abstract:We study linear contextual bandits in the misspecified setting, where the expected reward function can be approximated by a linear function class up to a bounded misspecification level $\zeta>0$. We propose an algorithm based on a novel data selection scheme, which only selects the contextual vectors with large uncertainty for online regression. We show that, when the misspecification level $\zeta$ is dominated by $\tilde O (\Delta / \sqrt{d})$ with $\Delta$ being the minimal sub-optimality gap and $d$ being the dimension of the contextual vectors, our algorithm enjoys the same gap-dependent regret bound $\tilde O (d^2/\Delta)$ as in the well-specified setting up to logarithmic factors. In addition, we show that an existing algorithm SupLinUCB (Chu et al., 2011) can also achieve a gap-dependent constant regret bound without the knowledge of sub-optimality gap $\Delta$. Together with a lower bound adapted from Lattimore et al. (2020), our result suggests an interplay between misspecification level and the sub-optimality gap: (1) the linear contextual bandit model is efficiently learnable when $\zeta \leq \tilde O(\Delta / \sqrt{d})$; and (2) it is not efficiently learnable when $\zeta \geq \tilde \Omega({\Delta} / {\sqrt{d}})$. Experiments on both synthetic and real-world datasets corroborate our theoretical results.