Abstract:We investigate the reliable use of simulated survey responses from large language models (LLMs) through the lens of uncertainty quantification. Our approach converts synthetic data into confidence sets for population parameters of human responses, addressing the distribution shift between the simulated and real populations. A key innovation lies in determining the optimal number of simulated responses: too many produce overly narrow confidence sets with poor coverage, while too few yield excessively loose estimates. To resolve this, our method adaptively selects the simulation sample size, ensuring valid average-case coverage guarantees. It is broadly applicable to any LLM, irrespective of its fidelity, and any procedure for constructing confidence sets. Additionally, the selected sample size quantifies the degree of misalignment between the LLM and the target human population. We illustrate our method on real datasets and LLMs.
Abstract:Modern foundation models often undergo iterative ``bootstrapping'' in their post-training phase: a model generates synthetic data, an external verifier filters out low-quality samples, and the high-quality subset is used for further fine-tuning. Over multiple iterations, the model's performance improves--raising a crucial question: how should the total budget on generation and training be allocated across iterations to maximize final performance? In this work, we develop a theoretical framework to analyze budget allocation strategies. Specifically, we show that constant policies fail to converge with high probability, while increasing policies--particularly exponential growth policies--exhibit significant theoretical advantages. Experiments on image denoising with diffusion probabilistic models and math reasoning with large language models show that both exponential and polynomial growth policies consistently outperform constant policies, with exponential policies often providing more stable performance.
Abstract:Black-box optimization is often encountered for decision-making in complex systems management, where the knowledge of system is limited. Under these circumstances, it is essential to balance the utilization of new information with computational efficiency. In practice, decision-makers often face the dual tasks of optimization and statistical inference for the optimal performance, in order to achieve it with a high reliability. Our goal is to address the dual tasks in an online fashion. Wu et al (2022) [arXiv preprint: 2210.06737] point out that the sample average of performance estimates generated by the optimization algorithm needs not to admit a central limit theorem. We propose an algorithm that not only tackles this issue, but also provides an online consistent estimator for the variance of the performance. Furthermore, we characterize the convergence rate of the coverage probabilities of the asymptotic confidence intervals.
Abstract:In recent years, as robotics has advanced, human-robot collaboration has gained increasing importance. However, current robots struggle to fully and accurately interpret human intentions from voice commands alone. Traditional gripper and suction systems often fail to interact naturally with humans, lack advanced manipulation capabilities, and are not adaptable to diverse tasks, especially in unstructured environments. This paper introduces the Embodied Dexterous Grasping System (EDGS), designed to tackle object grasping in cluttered environments for human-robot interaction. We propose a novel approach to semantic-object alignment using a Vision-Language Model (VLM) that fuses voice commands and visual information, significantly enhancing the alignment of multi-dimensional attributes of target objects in complex scenarios. Inspired by human hand-object interactions, we develop a robust, precise, and efficient grasping strategy, incorporating principles like the thumb-object axis, multi-finger wrapping, and fingertip interaction with an object's contact mechanics. We also design experiments to assess Referring Expression Representation Enrichment (RERE) in referring expression segmentation, demonstrating that our system accurately detects and matches referring expressions. Extensive experiments confirm that EDGS can effectively handle complex grasping tasks, achieving stability and high success rates, highlighting its potential for further development in the field of Embodied AI.
Abstract:Fingerprinting large language models (LLMs) is essential for verifying model ownership, ensuring authenticity, and preventing misuse. Traditional fingerprinting methods often require significant computational overhead or white-box verification access. In this paper, we introduce UTF, a novel and efficient approach to fingerprinting LLMs by leveraging under-trained tokens. Under-trained tokens are tokens that the model has not fully learned during its training phase. By utilizing these tokens, we perform supervised fine-tuning to embed specific input-output pairs into the model. This process allows the LLM to produce predetermined outputs when presented with certain inputs, effectively embedding a unique fingerprint. Our method has minimal overhead and impact on model's performance, and does not require white-box access to target model's ownership identification. Compared to existing fingerprinting methods, UTF is also more effective and robust to fine-tuning and random guess.
Abstract:Symbolic Music, akin to language, can be encoded in discrete symbols. Recent research has extended the application of large language models (LLMs) such as GPT-4 and Llama2 to the symbolic music domain including understanding and generation. Yet scant research explores the details of how these LLMs perform on advanced music understanding and conditioned generation, especially from the multi-step reasoning perspective, which is a critical aspect in the conditioned, editable, and interactive human-computer co-creation process. This study conducts a thorough investigation of LLMs' capability and limitations in symbolic music processing. We identify that current LLMs exhibit poor performance in song-level multi-step music reasoning, and typically fail to leverage learned music knowledge when addressing complex musical tasks. An analysis of LLMs' responses highlights distinctly their pros and cons. Our findings suggest achieving advanced musical capability is not intrinsically obtained by LLMs, and future research should focus more on bridging the gap between music knowledge and reasoning, to improve the co-creation experience for musicians.
Abstract:The issue of hallucinations is a prevalent concern in existing Large Vision-Language Models (LVLMs). Previous efforts have primarily focused on investigating object hallucinations, which can be easily alleviated by introducing object detectors. However, these efforts neglect hallucinations in inter-object relationships, which is essential for visual comprehension. In this work, we introduce R-Bench, a novel benchmark for evaluating Vision Relationship Hallucination. R-Bench features image-level questions that focus on the existence of relationships and instance-level questions that assess local visual comprehension. We identify three types of relationship co-occurrences that lead to hallucinations: relationship-relationship, subject-relationship, and relationship-object. The visual instruction tuning dataset's long-tail distribution significantly impacts LVLMs' understanding of visual relationships. Furthermore, our analysis reveals that current LVLMs tend to disregard visual content and overly rely on the common sense knowledge of Large Language Models. They also struggle with reasoning about spatial relationships based on contextual information.
Abstract:Evaluating the alignment capabilities of large Vision-Language Models (VLMs) is essential for determining their effectiveness as helpful assistants. However, existing benchmarks primarily focus on basic abilities using nonverbal methods, such as yes-no and multiple-choice questions. In this paper, we address this gap by introducing AlignMMBench, a comprehensive alignment benchmark specifically designed for emerging Chinese VLMs. This benchmark is meticulously curated from real-world scenarios and Chinese Internet sources, encompassing thirteen specific tasks across three categories, and includes both single-turn and multi-turn dialogue scenarios. Incorporating a prompt rewrite strategy, AlignMMBench encompasses 1,054 images and 4,978 question-answer pairs. To facilitate the evaluation pipeline, we propose CritiqueVLM, a rule-calibrated evaluator that exceeds GPT-4's evaluation ability. Finally, we report the performance of representative VLMs on AlignMMBench, offering insights into the capabilities and limitations of different VLM architectures. All evaluation codes and data are available on https://alignmmbench.github.io.
Abstract:Pre-trained large language models (LLM) have emerged as a powerful tool for simulating various scenarios and generating output given specific instructions and multimodal input. In this work, we analyze the specific use of LLM to enhance a classical supervised machine learning method for classification problems. We propose a few approaches to integrate LLM into a classical machine learning estimator to further enhance the prediction performance. We examine the performance of the proposed approaches through both standard supervised learning binary classification tasks, and a transfer learning task where the test data observe distribution changes compared to the training data. Numerical experiments using four publicly available datasets are conducted and suggest that using LLM to enhance classical machine learning estimators can provide significant improvement on prediction performance.
Abstract:This technical report presents our solution, "occTransformer" for the 3D occupancy prediction track in the autonomous driving challenge at CVPR 2023. Our method builds upon the strong baseline BEVFormer and improves its performance through several simple yet effective techniques. Firstly, we employed data augmentation to increase the diversity of the training data and improve the model's generalization ability. Secondly, we used a strong image backbone to extract more informative features from the input data. Thirdly, we incorporated a 3D unet head to better capture the spatial information of the scene. Fourthly, we added more loss functions to better optimize the model. Additionally, we used an ensemble approach with the occ model BevDet and SurroundOcc to further improve the performance. Most importantly, we integrated 3D detection model StreamPETR to enhance the model's ability to detect objects in the scene. Using these methods, our solution achieved 49.23 miou on the 3D occupancy prediction track in the autonomous driving challenge.