Abstract:Fingerprinting large language models (LLMs) is essential for verifying model ownership, ensuring authenticity, and preventing misuse. Traditional fingerprinting methods often require significant computational overhead or white-box verification access. In this paper, we introduce UTF, a novel and efficient approach to fingerprinting LLMs by leveraging under-trained tokens. Under-trained tokens are tokens that the model has not fully learned during its training phase. By utilizing these tokens, we perform supervised fine-tuning to embed specific input-output pairs into the model. This process allows the LLM to produce predetermined outputs when presented with certain inputs, effectively embedding a unique fingerprint. Our method has minimal overhead and impact on model's performance, and does not require white-box access to target model's ownership identification. Compared to existing fingerprinting methods, UTF is also more effective and robust to fine-tuning and random guess.
Abstract:Symbolic Music, akin to language, can be encoded in discrete symbols. Recent research has extended the application of large language models (LLMs) such as GPT-4 and Llama2 to the symbolic music domain including understanding and generation. Yet scant research explores the details of how these LLMs perform on advanced music understanding and conditioned generation, especially from the multi-step reasoning perspective, which is a critical aspect in the conditioned, editable, and interactive human-computer co-creation process. This study conducts a thorough investigation of LLMs' capability and limitations in symbolic music processing. We identify that current LLMs exhibit poor performance in song-level multi-step music reasoning, and typically fail to leverage learned music knowledge when addressing complex musical tasks. An analysis of LLMs' responses highlights distinctly their pros and cons. Our findings suggest achieving advanced musical capability is not intrinsically obtained by LLMs, and future research should focus more on bridging the gap between music knowledge and reasoning, to improve the co-creation experience for musicians.
Abstract:The issue of hallucinations is a prevalent concern in existing Large Vision-Language Models (LVLMs). Previous efforts have primarily focused on investigating object hallucinations, which can be easily alleviated by introducing object detectors. However, these efforts neglect hallucinations in inter-object relationships, which is essential for visual comprehension. In this work, we introduce R-Bench, a novel benchmark for evaluating Vision Relationship Hallucination. R-Bench features image-level questions that focus on the existence of relationships and instance-level questions that assess local visual comprehension. We identify three types of relationship co-occurrences that lead to hallucinations: relationship-relationship, subject-relationship, and relationship-object. The visual instruction tuning dataset's long-tail distribution significantly impacts LVLMs' understanding of visual relationships. Furthermore, our analysis reveals that current LVLMs tend to disregard visual content and overly rely on the common sense knowledge of Large Language Models. They also struggle with reasoning about spatial relationships based on contextual information.
Abstract:Evaluating the alignment capabilities of large Vision-Language Models (VLMs) is essential for determining their effectiveness as helpful assistants. However, existing benchmarks primarily focus on basic abilities using nonverbal methods, such as yes-no and multiple-choice questions. In this paper, we address this gap by introducing AlignMMBench, a comprehensive alignment benchmark specifically designed for emerging Chinese VLMs. This benchmark is meticulously curated from real-world scenarios and Chinese Internet sources, encompassing thirteen specific tasks across three categories, and includes both single-turn and multi-turn dialogue scenarios. Incorporating a prompt rewrite strategy, AlignMMBench encompasses 1,054 images and 4,978 question-answer pairs. To facilitate the evaluation pipeline, we propose CritiqueVLM, a rule-calibrated evaluator that exceeds GPT-4's evaluation ability. Finally, we report the performance of representative VLMs on AlignMMBench, offering insights into the capabilities and limitations of different VLM architectures. All evaluation codes and data are available on https://alignmmbench.github.io.
Abstract:Pre-trained large language models (LLM) have emerged as a powerful tool for simulating various scenarios and generating output given specific instructions and multimodal input. In this work, we analyze the specific use of LLM to enhance a classical supervised machine learning method for classification problems. We propose a few approaches to integrate LLM into a classical machine learning estimator to further enhance the prediction performance. We examine the performance of the proposed approaches through both standard supervised learning binary classification tasks, and a transfer learning task where the test data observe distribution changes compared to the training data. Numerical experiments using four publicly available datasets are conducted and suggest that using LLM to enhance classical machine learning estimators can provide significant improvement on prediction performance.
Abstract:This technical report presents our solution, "occTransformer" for the 3D occupancy prediction track in the autonomous driving challenge at CVPR 2023. Our method builds upon the strong baseline BEVFormer and improves its performance through several simple yet effective techniques. Firstly, we employed data augmentation to increase the diversity of the training data and improve the model's generalization ability. Secondly, we used a strong image backbone to extract more informative features from the input data. Thirdly, we incorporated a 3D unet head to better capture the spatial information of the scene. Fourthly, we added more loss functions to better optimize the model. Additionally, we used an ensemble approach with the occ model BevDet and SurroundOcc to further improve the performance. Most importantly, we integrated 3D detection model StreamPETR to enhance the model's ability to detect objects in the scene. Using these methods, our solution achieved 49.23 miou on the 3D occupancy prediction track in the autonomous driving challenge.
Abstract:While Large Language Models (LLMs) demonstrate impressive capabilities in text generation, we find that their ability has yet to be generalized to music, humanity's creative language. We introduce ChatMusician, an open-source LLM that integrates intrinsic musical abilities. It is based on continual pre-training and finetuning LLaMA2 on a text-compatible music representation, ABC notation, and the music is treated as a second language. ChatMusician can understand and generate music with a pure text tokenizer without any external multi-modal neural structures or tokenizers. Interestingly, endowing musical abilities does not harm language abilities, even achieving a slightly higher MMLU score. Our model is capable of composing well-structured, full-length music, conditioned on texts, chords, melodies, motifs, musical forms, etc, surpassing GPT-4 baseline. On our meticulously curated college-level music understanding benchmark, MusicTheoryBench, ChatMusician surpasses LLaMA2 and GPT-3.5 on zero-shot setting by a noticeable margin. Our work reveals that LLMs can be an excellent compressor for music, but there remains significant territory to be conquered. We release our 4B token music-language corpora MusicPile, the collected MusicTheoryBench, code, model and demo in GitHub.
Abstract:Most existing personalized federated learning approaches are based on intricate designs, which often require complex implementation and tuning. In order to address this limitation, we propose a simple yet effective personalized federated learning framework. Specifically, during each communication round, we group clients into multiple clusters based on their model training status and data distribution on the server side. We then consider each cluster center as a node equipped with model parameters and construct a graph that connects these nodes using weighted edges. Additionally, we update the model parameters at each node by propagating information across the entire graph. Subsequently, we design a precise personalized model distribution strategy to allow clients to obtain the most suitable model from the server side. We conduct experiments on three image benchmark datasets and create synthetic structured datasets with three types of typologies. Experimental results demonstrate the effectiveness of the proposed work.
Abstract:In the rapidly evolving landscape of artificial intelligence, ChatGPT has been widely used in various applications. The new feature: customization of ChatGPT models by users to cater to specific needs has opened new frontiers in AI utility. However, this study reveals a significant security vulnerability inherent in these user-customized GPTs: prompt injection attacks. Through comprehensive testing of over 200 user-designed GPT models via adversarial prompts, we demonstrate that these systems are susceptible to prompt injections. Through prompt injection, an adversary can not only extract the customized system prompts but also access the uploaded files. This paper provides a first-hand analysis of the prompt injection, alongside the evaluation of the possible mitigation of such attacks. Our findings underscore the urgent need for robust security frameworks in the design and deployment of customizable GPT models. The intent of this paper is to raise awareness and prompt action in the AI community, ensuring that the benefits of GPT customization do not come at the cost of compromised security and privacy.
Abstract:Utilizing covariate information has been a powerful approach to improve the efficiency and accuracy for causal inference, which support massive amount of randomized experiments run on data-driven enterprises. However, state-of-art approaches can become practically unreliable when the dimension of covariate increases to just 50, whereas experiments on large platforms can observe even higher dimension of covariate. We propose a machine-learning-assisted covariate representation approach that can effectively make use of historical experiment or observational data that are run on the same platform to understand which lower dimensions can effectively represent the higher-dimensional covariate. We then propose design and estimation methods with the covariate representation. We prove statistically reliability and performance guarantees for the proposed methods. The empirical performance is demonstrated using numerical experiments.