Michael Pokorny
Abstract:SAM3D enables scalable, open-world 3D reconstruction from complex scenes, yet its deployment is hindered by prohibitive inference latency. In this work, we conduct the \textbf{first systematic investigation} into its inference dynamics, revealing that generic acceleration strategies are brittle in this context. We demonstrate that these failures stem from neglecting the pipeline's inherent multi-level \textbf{heterogeneity}: the kinematic distinctiveness between shape and layout, the intrinsic sparsity of texture refinement, and the spectral variance across geometries. To address this, we present \textbf{Fast-SAM3D}, a training-free framework that dynamically aligns computation with instantaneous generation complexity. Our approach integrates three heterogeneity-aware mechanisms: (1) \textit{Modality-Aware Step Caching} to decouple structural evolution from sensitive layout updates; (2) \textit{Joint Spatiotemporal Token Carving} to concentrate refinement on high-entropy regions; and (3) \textit{Spectral-Aware Token Aggregation} to adapt decoding resolution. Extensive experiments demonstrate that Fast-SAM3D delivers up to \textbf{2.67$\times$} end-to-end speedup with negligible fidelity loss, establishing a new Pareto frontier for efficient single-view 3D generation. Our code is released in https://github.com/wlfeng0509/Fast-SAM3D.
Abstract:In high-stakes risk prediction, quantifying uncertainty through interval-valued predictions is essential for reliable decision-making. However, standard evaluation tools like the receiver operating characteristic (ROC) curve and the area under the curve (AUC) are designed for point scores and fail to capture the impact of predictive uncertainty on ranking performance. We propose an uncertainty-aware ROC framework specifically for interval-valued predictions, introducing two new measures: $AUC_L$ and $AUC_U$. This framework enables an informative three-region decomposition of the ROC plane, partitioning pairwise rankings into correct, incorrect, and uncertain orderings. This approach naturally supports selective prediction by allowing models to abstain from ranking cases with overlapping intervals, thereby optimizing the trade-off between abstention rate and discriminative reliability. We prove that under valid class-conditional coverage, $AUC_L$ and $AUC_U$ provide formal lower and upper bounds on the theoretical optimal AUC ($AUC^*$), characterizing the physical limit of achievable discrimination. The proposed framework applies broadly to interval-valued prediction models, regardless of the interval construction method. Experiments on real-world benchmark datasets, using bootstrap-based intervals as one instantiation, validate the framework's correctness and demonstrate its practical utility for uncertainty-aware evaluation and decision-making.
Abstract:Vector quantization (VQ) underpins modern generative and representation models by turning continuous latents into discrete tokens. Yet hard nearest-neighbor assignments are non-differentiable and are typically optimized with heuristic straight-through estimators, which couple the update step size to the quantization gap and train each code in isolation, leading to unstable gradients and severe codebook under-utilization at scale. In this paper, we introduce GRIT-VQ (Generalized Radius and Integrated Transform-Vector Quantization), a unified surrogate framework that keeps hard assignments in the forward pass while making VQ fully differentiable. GRIT-VQ replaces the straight-through estimator with a radius-based update that moves latents along the quantization direction with a controllable, geometry-aware step, and applies a data-agnostic integrated transform to the codebook so that all codes are updated through shared parameters instead of independently. Our theoretical analysis clarifies the fundamental optimization dynamics introduced by GRIT-VQ, establishing conditions for stable gradient flow, coordinated codebook evolution, and reliable avoidance of collapse across a broad family of quantizers. Across image reconstruction, image generation, and recommendation tokenization benchmarks, GRIT-VQ consistently improves reconstruction error, generative quality, and recommendation accuracy while substantially increasing codebook utilization compared to existing VQ variants.
Abstract:Video coding standards are essential to enable the interoperability and widespread adoption of efficient video compression technologies. In pursuit of greater video compression efficiency, the AVS video coding working group launched the standardization exploration of end-to-end intelligent video coding, establishing the AVS End-to-End Intelligent Video Coding Exploration Model (AVS-EEM) project. A core design principle of AVS-EEM is its focus on practical deployment, featuring inherently low computational complexity and requiring strict adherence to the common test conditions of conventional video coding. This paper details the development history of AVS-EEM and provides a systematic introduction to its key technical framework, covering model architectures, training strategies, and inference optimizations. These innovations have collectively driven the project's rapid performance evolution, enabling continuous and significant gains under strict complexity constraints. Through over two years of iterative refinement and collaborative effort, the coding performance of AVS-EEM has seen substantial improvement. Experimental results demonstrate that its latest model achieves superior compression efficiency compared to the conventional AVS3 reference software, marking a significant step toward a deployable intelligent video coding standard.
Abstract:Deep time-series forecasting can be formulated as a distribution balancing problem aimed at aligning the distribution of the forecasts and ground truths. According to Imbens' criterion, true distribution balance requires matching the first moments with respect to any balancing function. We demonstrate that existing objectives fail to meet this criterion, as they enforce moment matching only for one or two predefined balancing functions, thus failing to achieve full distribution balance. To address this limitation, we propose direct forecasting with kernelized moment balancing (KMB-DF). Unlike existing objectives, KMB-DF adaptively selects the most informative balancing functions from a reproducing kernel hilbert space (RKHS) to enforce sufficient distribution balancing. We derive a tractable and differentiable objective that enables efficient estimation from empirical samples and seamless integration into gradient-based training pipelines. Extensive experiments across multiple models and datasets show that KMB-DF consistently improves forecasting accuracy and achieves state-of-the-art performance. Code is available at https://anonymous.4open.science/r/KMB-DF-403C.
Abstract:Time Series foundation models (TSFMs) deliver strong forecasting performance through large-scale pretraining, but their large parameter sizes make deployment costly. While knowledge distillation offers a natural and effective approach for model compression, techniques developed for general machine learning tasks are not directly applicable to time series forecasting due to the unique characteristics. To address this, we present DistilTS, the first distillation framework specifically designed for TSFMs. DistilTS addresses two key challenges: (1) task difficulty discrepancy, specific to forecasting, where uniform weighting makes optimization dominated by easier short-term horizons, while long-term horizons receive weaker supervision; and (2) architecture discrepancy, a general challenge in distillation, for which we design an alignment mechanism in the time series forecasting. To overcome these issues, DistilTS introduces horizon-weighted objectives to balance learning across horizons, and a temporal alignment strategy that reduces architectural mismatch, enabling compact models. Experiments on multiple benchmarks demonstrate that DistilTS achieves forecasting performance comparable to full-sized TSFMs, while reducing parameters by up to 1/150 and accelerating inference by up to 6000x. Code is available at: https://github.com/itsnotacie/DistilTS-ICASSP2026.
Abstract:Recent advances in large language models (LLMs) highlight a strong connection between intelligence and compression. Learned image compression, a fundamental task in modern data compression, has made significant progress in recent years. However, current models remain limited in scale, restricting their representation capacity, and how scaling model size influences compression performance remains unexplored. In this work, we present a pioneering study on scaling up learned image compression models and revealing the performance trends through scaling laws. Using the recent state-of-the-art HPCM model as baseline, we scale model parameters from 68.5 millions to 1 billion and fit power-law relations between test loss and key scaling variables, including model size and optimal training compute. The results reveal a scaling trend, enabling extrapolation to larger scale models. Experimental results demonstrate that the scaled-up HPCM-1B model achieves state-of-the-art rate-distortion performance. We hope this work inspires future exploration of large-scale compression models and deeper investigations into the connection between compression and intelligence.
Abstract:Explorable 3D world generation from a single image or text prompt forms a cornerstone of spatial intelligence. Recent works utilize video model to achieve wide-scope and generalizable 3D world generation. However, existing approaches often suffer from a limited scope in the generated scenes. In this work, we propose Matrix-3D, a framework that utilize panoramic representation for wide-coverage omnidirectional explorable 3D world generation that combines conditional video generation and panoramic 3D reconstruction. We first train a trajectory-guided panoramic video diffusion model that employs scene mesh renders as condition, to enable high-quality and geometrically consistent scene video generation. To lift the panorama scene video to 3D world, we propose two separate methods: (1) a feed-forward large panorama reconstruction model for rapid 3D scene reconstruction and (2) an optimization-based pipeline for accurate and detailed 3D scene reconstruction. To facilitate effective training, we also introduce the Matrix-Pano dataset, the first large-scale synthetic collection comprising 116K high-quality static panoramic video sequences with depth and trajectory annotations. Extensive experiments demonstrate that our proposed framework achieves state-of-the-art performance in panoramic video generation and 3D world generation. See more in https://matrix-3d.github.io.
Abstract:Diffusion transformers have emerged as the mainstream paradigm for video generation models. However, the use of up to billions of parameters incurs significant computational costs. Quantization offers a promising solution by reducing memory usage and accelerating inference. Nonetheless, we observe that the joint modeling of spatial and temporal information in video diffusion models (V-DMs) leads to extremely long token sequences, which introduces high calibration variance and learning challenges. To address these issues, we propose \textbf{$\text{S}^2$Q-VDiT}, a post-training quantization framework for V-DMs that leverages \textbf{S}alient data and \textbf{S}parse token distillation. During the calibration phase, we identify that quantization performance is highly sensitive to the choice of calibration data. To mitigate this, we introduce \textit{Hessian-aware Salient Data Selection}, which constructs high-quality calibration datasets by considering both diffusion and quantization characteristics unique to V-DMs. To tackle the learning challenges, we further analyze the sparse attention patterns inherent in V-DMs. Based on this observation, we propose \textit{Attention-guided Sparse Token Distillation}, which exploits token-wise attention distributions to emphasize tokens that are more influential to the model's output. Under W4A6 quantization, $\text{S}^2$Q-VDiT achieves lossless performance while delivering $3.9\times$ model compression and $1.3\times$ inference acceleration. Code will be available at \href{https://github.com/wlfeng0509/s2q-vdit}{https://github.com/wlfeng0509/s2q-vdit}.
Abstract:Although deep learning has substantially advanced speech separation in recent years, most existing studies continue to prioritize separation quality while overlooking computational efficiency, an essential factor for low-latency speech processing in real-time applications. In this paper, we propose SepPrune, the first structured pruning framework specifically designed to compress deep speech separation models and reduce their computational cost. SepPrune begins by analyzing the computational structure of a given model to identify layers with the highest computational burden. It then introduces a differentiable masking strategy to enable gradient-driven channel selection. Based on the learned masks, SepPrune prunes redundant channels and fine-tunes the remaining parameters to recover performance. Extensive experiments demonstrate that this learnable pruning paradigm yields substantial advantages for channel pruning in speech separation models, outperforming existing methods. Notably, a model pruned with SepPrune can recover 85% of the performance of a pre-trained model (trained over hundreds of epochs) with only one epoch of fine-tuning, and achieves convergence 36$\times$ faster than training from scratch. Code is available at https://github.com/itsnotacie/SepPrune.