Abstract:This paper presents ScaleCap, an inference-time scalable image captioning strategy that generates comprehensive and detailed image captions. The key challenges of high-quality image captioning lie in the inherent biases of LVLMs: multimodal bias resulting in imbalanced descriptive granularity, offering detailed accounts of some elements while merely skimming over others; linguistic bias leading to hallucinated descriptions of non-existent objects. To address these issues, we propose a scalable debiased captioning strategy, which continuously enriches and calibrates the caption with increased inference budget. Specifically, we propose two novel components: heuristic question answering and contrastive sentence rating. The former generates content-specific questions based on the image and answers them to progressively inject relevant information into the caption. The latter employs sentence-level offline contrastive decoding to effectively identify and eliminate hallucinations caused by linguistic biases. With increased inference cost, more heuristic questions are raised by ScaleCap to progressively capture additional visual details, generating captions that are more accurate, balanced, and informative. Extensive modality alignment experiments demonstrate the effectiveness of ScaleCap. Annotating 450K images with ScaleCap and using them for LVLM pretraining leads to consistent performance gains across 11 widely used benchmarks. Furthermore, ScaleCap showcases superb richness and fidelity of generated captions with two additional tasks: replacing images with captions in VQA task, and reconstructing images from captions to assess semantic coverage. Code is available at https://github.com/Cooperx521/ScaleCap.
Abstract:Recommendation fairness has recently attracted much attention. In the real world, recommendation systems are driven by user behavior, and since users with the same sensitive feature (e.g., gender and age) tend to have the same patterns, recommendation models can easily capture the strong correlation preference of sensitive features and thus cause recommendation unfairness. Diffusion model (DM) as a new generative model paradigm has achieved great success in recommendation systems. DM's ability to model uncertainty and represent diversity, and its modeling mechanism has a high degree of adaptability with the real-world recommendation process with bias. Therefore, we use DM to effectively model the fairness of recommendation and enhance the diversity. This paper proposes a FairGENerative sequential Recommendation model based on DM, FairGENRec. In the training phase, we inject random noise into the original distribution under the guidance of the sensitive feature recognition model, and a sequential denoise model is designed for the reverse reconstruction of items. Simultaneously, recommendation fairness modeling is completed by injecting multi-interests representational information that eliminates the bias of sensitive user features into the generated results. In the inference phase, the model obtains the noise in the form of noise addition by using the history interactions which is followed by reverse iteration to reconstruct the target item representation. Finally, our extensive experiments on three datasets demonstrate the dual enhancement effect of FairGENRec on accuracy and fairness, while the statistical analysis of the cases visualizes the degree of improvement on the fairness of the recommendation.
Abstract:Recent advancements in reinforcement learning (RL) have led to significant progress in humanoid robot locomotion, simplifying the design and training of motion policies in simulation. However, the numerous implementation details make transferring these policies to real-world robots a challenging task. To address this, we have developed a comprehensive code framework that covers the entire process from training to deployment, incorporating common RL training methods, domain randomization, reward function design, and solutions for handling parallel structures. This library is made available as a community resource, with detailed descriptions of its design and experimental results. We validate the framework on the Booster T1 robot, demonstrating that the trained policies seamlessly transfer to the physical platform, enabling capabilities such as omnidirectional walking, disturbance resistance, and terrain adaptability. We hope this work provides a convenient tool for the robotics community, accelerating the development of humanoid robots. The code can be found in https://github.com/BoosterRobotics/booster_gym.
Abstract:Feature coding has become increasingly important in scenarios where semantic representations rather than raw pixels are transmitted and stored. However, most existing methods are architecture-specific, targeting either CNNs or Transformers. This design limits their applicability in real-world scenarios where features from both architectures coexist. To address this gap, we introduce a new research problem: cross-architecture universal feature coding (CAUFC), which seeks to build a unified codec that can effectively compress features from heterogeneous architectures. To tackle this challenge, we propose a two-step distribution alignment method. First, we design the format alignment method that unifies CNN and Transformer features into a consistent 2D token format. Second, we propose the feature value alignment method that harmonizes statistical distributions via truncation and normalization. As a first attempt to study CAUFC, we evaluate our method on the image classification task. Experimental results demonstrate that our method achieves superior rate-accuracy trade-offs compared to the architecture-specific baseline. This work marks an initial step toward universal feature compression across heterogeneous model architectures.
Abstract:Electroencephalography (EEG) provides real-time insights into brain activity and is widely used in neuroscience. However, variations in channel configurations, sequence lengths, and task objectives limit the transferability of traditional task-specific models. Although recent EEG foundation models (EFMs) aim to learn generalizable representations, they struggle with limited heterogeneous representation capacity and inefficiency in capturing multi-scale brain dependencies. To address these challenges, we propose CodeBrain, an efficient EFM structurally aligned with brain organization, trained in two stages. (1) We introduce a TFDual-Tokenizer that independently tokenizes heterogeneous temporal and frequency components, enabling a quadratic expansion of the discrete representation space. This also offers a degree of interpretability through cross-domain token analysis. (2) We propose the EEGSSM, which combines a structured global convolution architecture and a sliding window attention mechanism to jointly model sparse long-range and local dependencies. Unlike fully connected Transformer models, EEGSSM better reflects the brain's small-world topology and efficiently captures EEG's inherent multi-scale structure. EEGSSM is trained with a masked self-supervised learning objective to predict token indices obtained in TFDual-Tokenizer. Comprehensive experiments on 10 public EEG datasets demonstrate the generalizability of CodeBrain with linear probing. By offering biologically informed and interpretable EEG modeling, CodeBrain lays the foundation for future neuroscience research. Both code and pretraining weights will be released in the future version.
Abstract:Recent advancements have significantly enhanced the performance of large language models (LLMs) in tackling complex reasoning tasks, achieving notable success in domains like mathematical and logical reasoning. However, these methods encounter challenges with complex planning tasks, primarily due to extended reasoning steps, diverse constraints, and the challenge of handling multiple distinct sub-tasks. To address these challenges, we propose HyperTree Planning (HTP), a novel reasoning paradigm that constructs hypertree-structured planning outlines for effective planning. The hypertree structure enables LLMs to engage in hierarchical thinking by flexibly employing the divide-and-conquer strategy, effectively breaking down intricate reasoning steps, accommodating diverse constraints, and managing multiple distinct sub-tasks in a well-organized manner. We further introduce an autonomous planning framework that completes the planning process by iteratively refining and expanding the hypertree-structured planning outlines. Experiments demonstrate the effectiveness of HTP, achieving state-of-the-art accuracy on the TravelPlanner benchmark with Gemini-1.5-Pro, resulting in a 3.6 times performance improvement over o1-preview.
Abstract:Tree-search-based reasoning methods have significantly enhanced the reasoning capability of large language models (LLMs) by facilitating the exploration of multiple intermediate reasoning steps, i.e., thoughts. However, these methods suffer from substantial inference latency, as they have to generate numerous reasoning thoughts, severely limiting LLM applicability. To address this challenge, we propose a novel Speculative Search (SpecSearch) framework that significantly accelerates LLM reasoning by optimizing thought generation. Specifically, SpecSearch utilizes a small model to strategically collaborate with a large model at both thought and token levels, efficiently generating high-quality reasoning thoughts. The major pillar of SpecSearch is a novel quality-preserving rejection mechanism, which effectively filters out thoughts whose quality falls below that of the large model's outputs. Moreover, we show that SpecSearch preserves comparable reasoning quality to the large model. Experiments on both the Qwen and Llama models demonstrate that SpecSearch significantly outperforms state-of-the-art approaches, achieving up to 2.12$\times$ speedup with comparable reasoning quality.
Abstract:Among the new techniques of Versatile Video Coding (VVC), the quadtree with nested multi-type tree (QT+MTT) block structure yields significant coding gains by providing more flexible block partitioning patterns. However, the recursive partition search in the VVC encoder increases the encoder complexity substantially. To address this issue, we propose a partition map-based algorithm to pursue fast block partitioning in inter coding. Based on our previous work on partition map-based methods for intra coding, we analyze the characteristics of VVC inter coding, and thus improve the partition map by incorporating an MTT mask for early termination. Next, we develop a neural network that uses both spatial and temporal features to predict the partition map. It consists of several special designs including stacked top-down and bottom-up processing, quantization parameter modulation layers, and partitioning-adaptive warping. Furthermore, we present a dual-threshold decision scheme to achieve a fine-grained trade-off between complexity reduction and rate-distortion (RD) performance loss. The experimental results demonstrate that the proposed method achieves an average 51.30% encoding time saving with a 2.12% Bjontegaard Delta Bit Rate (BDBR) under the random access configuration.
Abstract:Relative pose estimation provides a promising way for achieving object-agnostic pose estimation. Despite the success of existing 3D correspondence-based methods, the reliance on explicit feature matching suffers from small overlaps in visible regions and unreliable feature estimation for invisible regions. Inspired by humans' ability to assemble two object parts that have small or no overlapping regions by considering object structure, we propose a novel Structure-Aware Correspondence Learning method for Relative Pose Estimation, which consists of two key modules. First, a structure-aware keypoint extraction module is designed to locate a set of kepoints that can represent the structure of objects with different shapes and appearance, under the guidance of a keypoint based image reconstruction loss. Second, a structure-aware correspondence estimation module is designed to model the intra-image and inter-image relationships between keypoints to extract structure-aware features for correspondence estimation. By jointly leveraging these two modules, the proposed method can naturally estimate 3D-3D correspondences for unseen objects without explicit feature matching for precise relative pose estimation. Experimental results on the CO3D, Objaverse and LineMOD datasets demonstrate that the proposed method significantly outperforms prior methods, i.e., with 5.7{\deg}reduction in mean angular error on the CO3D dataset.
Abstract:In mixed-integer programming (MIP) solvers, cutting planes are essential for Branch-and-Cut (B&C) algorithms as they reduce the search space and accelerate the solving process. Traditional methods rely on hard-coded heuristics for cut plane selection but fail to leverage problem-specific structural features. Recent machine learning approaches use neural networks for cut selection but focus narrowly on the efficiency of single-node within the B&C algorithm, without considering the broader contextual information. To address this, we propose Global Cut Selection (GCS), which uses a bipartite graph to represent the search tree and combines graph neural networks with reinforcement learning to develop cut selection strategies. Unlike prior methods, GCS applies cutting planes across all nodes, incorporating richer contextual information. Experiments show GCS significantly improves solving efficiency for synthetic and large-scale real-world MIPs compared to traditional and learning-based methods.