Abstract:Click-through rate (CTR) prediction, which predicts the probability of a user clicking an ad, is a fundamental task in recommender systems. The emergence of heterogeneous information, such as user profile and behavior sequences, depicts user interests from different aspects. A mutually beneficial integration of heterogeneous information is the cornerstone towards the success of CTR prediction. However, most of the existing methods suffer from two fundamental limitations, including (1) insufficient inter-mode interaction due to the unidirectional information flow between modes, and (2) aggressive information aggregation caused by early summarization, resulting in excessive information loss. To address the above limitations, we propose a novel module named InterFormer to learn heterogeneous information interaction in an interleaving style. To achieve better interaction learning, InterFormer enables bidirectional information flow for mutually beneficial learning across different modes. To avoid aggressive information aggregation, we retain complete information in each data mode and use a separate bridging arch for effective information selection and summarization. Our proposed InterFormer achieves state-of-the-art performance on three public datasets and a large-scale industrial dataset.
Abstract:Most work in graph-based recommender systems considers a {\em static} setting where all information about test nodes (i.e., users and items) is available upfront at training time. However, this static setting makes little sense for many real-world applications where data comes in continuously as a stream of new edges and nodes, and one has to update model predictions incrementally to reflect the latest state. To fully capitalize on the newly available data in the stream, recent graph-based recommendation models would need to be repeatedly retrained, which is infeasible in practice. In this paper, we study the graph-based streaming recommendation setting and propose a compositional recommendation model -- Lightweight Compositional Embedding (LCE) -- that supports incremental updates under low computational cost. Instead of learning explicit embeddings for the full set of nodes, LCE learns explicit embeddings for only a subset of nodes and represents the other nodes {\em implicitly}, through a composition function based on their interactions in the graph. This provides an effective, yet efficient, means to leverage streaming graph data when one node type (e.g., items) is more amenable to static representation. We conduct an extensive empirical study to compare LCE to a set of competitive baselines on three large-scale user-item recommendation datasets with interactions under a streaming setting. The results demonstrate the superior performance of LCE, showing that it achieves nearly skyline performance with significantly fewer parameters than alternative graph-based models.
Abstract:Graph Neural Networks (GNNs) have recently been used for node and graph classification tasks with great success, but GNNs model dependencies among the attributes of nearby neighboring nodes rather than dependencies among observed node labels. In this work, we consider the task of inductive node classification using GNNs in supervised and semi-supervised settings, with the goal of incorporating label dependencies. Because current GNNs are not universal (i.e., most-expressive) graph representations, we propose a general collective learning approach to increase the representation power of any existing GNN. Our framework combines ideas from collective classification with self-supervised learning, and uses a Monte Carlo approach to sampling embeddings for inductive learning across graphs. We evaluate performance on five real-world network datasets and demonstrate consistent, significant improvement in node classification accuracy, for a variety of state-of-the-art GNNs.