Abstract:Large language models (LLMs) have recently been used as backbones for recommender systems. However, their performance often lags behind conventional methods in standard tasks like retrieval. We attribute this to a mismatch between LLMs' knowledge and the knowledge crucial for effective recommendations. While LLMs excel at natural language reasoning, they cannot model complex user-item interactions inherent in recommendation tasks. We propose bridging the knowledge gap and equipping LLMs with recommendation-specific knowledge to address this. Operations such as Masked Item Modeling (MIM) and Bayesian Personalized Ranking (BPR) have found success in conventional recommender systems. Inspired by this, we simulate these operations through natural language to generate auxiliary-task data samples that encode item correlations and user preferences. Fine-tuning LLMs on such auxiliary-task data samples and incorporating more informative recommendation-task data samples facilitates the injection of recommendation-specific knowledge into LLMs. Extensive experiments across retrieval, ranking, and rating prediction tasks on LLMs such as FLAN-T5-Base and FLAN-T5-XL show the effectiveness of our technique in domains such as Amazon Toys & Games, Beauty, and Sports & Outdoors. Notably, our method outperforms conventional and LLM-based baselines, including the current SOTA, by significant margins in retrieval, showcasing its potential for enhancing recommendation quality.
Abstract:As a trending approach for social event detection, graph neural network (GNN)-based methods enable a fusion of natural language semantics and the complex social network structural information, thus showing SOTA performance. However, GNN-based methods can miss useful message correlations. Moreover, they require manual labeling for training and predetermining the number of events for prediction. In this work, we address social event detection via graph structural entropy (SE) minimization. While keeping the merits of the GNN-based methods, the proposed framework, HISEvent, constructs more informative message graphs, is unsupervised, and does not require the number of events given a priori. Specifically, we incrementally explore the graph neighborhoods using 1-dimensional (1D) SE minimization to supplement the existing message graph with edges between semantically related messages. We then detect events from the message graph by hierarchically minimizing 2-dimensional (2D) SE. Our proposed 1D and 2D SE minimization algorithms are customized for social event detection and effectively tackle the efficiency problem of the existing SE minimization algorithms. Extensive experiments show that HISEvent consistently outperforms GNN-based methods and achieves the new SOTA for social event detection under both closed- and open-set settings while being efficient and robust.
Abstract:Recently, the fast development of Large Language Models (LLMs) such as ChatGPT has significantly advanced NLP tasks by enhancing the capabilities of conversational models. However, the application of LLMs in the recommendation domain has not been thoroughly investigated. To bridge this gap, we propose LLMRec, a LLM-based recommender system designed for benchmarking LLMs on various recommendation tasks. Specifically, we benchmark several popular off-the-shelf LLMs, such as ChatGPT, LLaMA, ChatGLM, on five recommendation tasks, including rating prediction, sequential recommendation, direct recommendation, explanation generation, and review summarization. Furthermore, we investigate the effectiveness of supervised finetuning to improve LLMs' instruction compliance ability. The benchmark results indicate that LLMs displayed only moderate proficiency in accuracy-based tasks such as sequential and direct recommendation. However, they demonstrated comparable performance to state-of-the-art methods in explainability-based tasks. We also conduct qualitative evaluations to further evaluate the quality of contents generated by different models, and the results show that LLMs can truly understand the provided information and generate clearer and more reasonable results. We aspire that this benchmark will serve as an inspiration for researchers to delve deeper into the potential of LLMs in enhancing recommendation performance. Our codes, processed data and benchmark results are available at https://github.com/williamliujl/LLMRec.
Abstract:Recommendation systems suffer in the strict cold-start (SCS) scenario, where the user-item interactions are entirely unavailable. The ID-based approaches completely fail to work. Cold-start recommenders, on the other hand, leverage item contents to map the new items to the existing ones. However, the existing SCS recommenders explore item contents in coarse-grained manners that introduce noise or information loss. Moreover, informative data sources other than item contents, such as users' purchase sequences and review texts, are ignored. We explore the role of the fine-grained item attributes in bridging the gaps between the existing and the SCS items and pre-train a knowledgeable item-attribute graph for SCS item recommendation. Our proposed framework, ColdGPT, models item-attribute correlations into an item-attribute graph by extracting fine-grained attributes from item contents. ColdGPT then transfers knowledge into the item-attribute graph from various available data sources, i.e., item contents, historical purchase sequences, and review texts of the existing items, via multi-task learning. To facilitate the positive transfer, ColdGPT designs submodules according to the natural forms of the data sources and coordinates the multiple pre-training tasks via unified alignment-and-uniformity losses. Our pre-trained item-attribute graph acts as an implicit, extendable item embedding matrix, which enables the SCS item embeddings to be easily acquired by inserting these items and propagating their attributes' embeddings. We carefully process three public datasets, i.e., Yelp, Amazon-home, and Amazon-sports, to guarantee the SCS setting for evaluation. Extensive experiments show that ColdGPT consistently outperforms the existing SCS recommenders by large margins and even surpasses models that are pre-trained on 75-224 times more, cross-domain data on two out of four datasets.
Abstract:Temporal Expression Extraction (TEE) is essential for understanding time in natural language. It has applications in Natural Language Processing (NLP) tasks such as question answering, information retrieval, and causal inference. To date, work in this area has mostly focused on English as there is a scarcity of labeled data for other languages. We propose XLTime, a novel framework for multilingual TEE. XLTime works on top of pre-trained language models and leverages multi-task learning to prompt cross-language knowledge transfer both from English and within the non-English languages. XLTime alleviates problems caused by a shortage of data in the target language. We apply XLTime with different language models and show that it outperforms the previous automatic SOTA methods on French, Spanish, Portuguese, and Basque, by large margins. XLTime also closes the gap considerably on the handcrafted HeidelTime method.
Abstract:Graph neural networks (GNNs) have been widely used in deep learning on graphs. They can learn effective node representations that achieve superior performances in graph analysis tasks such as node classification and node clustering. However, most methods ignore the heterogeneity in real-world graphs. Methods designed for heterogeneous graphs, on the other hand, fail to learn complex semantic representations because they only use meta-paths instead of meta-graphs. Furthermore, they cannot fully capture the content-based correlations between nodes, as they either do not use the self-attention mechanism or only use it to consider the immediate neighbors of each node, ignoring the higher-order neighbors. We propose a novel Higher-order Attribute-Enhancing (HAE) framework that enhances node embedding in a layer-by-layer manner. Under the HAE framework, we propose a Higher-order Attribute-Enhancing Graph Neural Network (HAEGNN) for heterogeneous network representation learning. HAEGNN simultaneously incorporates meta-paths and meta-graphs for rich, heterogeneous semantics, and leverages the self-attention mechanism to explore content-based nodes interactions. The unique higher-order architecture of HAEGNN allows examining the first-order as well as higher-order neighborhoods. Moreover, HAEGNN shows good explainability as it learns the importances of different meta-paths and meta-graphs. HAEGNN is also memory-efficient, for it avoids per meta-path based matrix calculation. Experimental results not only show HAEGNN superior performance against the state-of-the-art methods in node classification, node clustering, and visualization, but also demonstrate its superiorities in terms of memory efficiency and explainability.
Abstract:Social events provide valuable insights into group social behaviors and public concerns and therefore have many applications in fields such as product recommendation and crisis management. The complexity and streaming nature of social messages make it appealing to address social event detection in an incremental learning setting, where acquiring, preserving, and extending knowledge are major concerns. Most existing methods, including those based on incremental clustering and community detection, learn limited amounts of knowledge as they ignore the rich semantics and structural information contained in social data. Moreover, they cannot memorize previously acquired knowledge. In this paper, we propose a novel Knowledge-Preserving Incremental Heterogeneous Graph Neural Network (KPGNN) for incremental social event detection. To acquire more knowledge, KPGNN models complex social messages into unified social graphs to facilitate data utilization and explores the expressive power of GNNs for knowledge extraction. To continuously adapt to the incoming data, KPGNN adopts contrastive loss terms that cope with a changing number of event classes. It also leverages the inductive learning ability of GNNs to efficiently detect events and extends its knowledge from previously unseen data. To deal with large social streams, KPGNN adopts a mini-batch subgraph sampling strategy for scalable training, and periodically removes obsolete data to maintain a dynamic embedding space. KPGNN requires no feature engineering and has few hyperparameters to tune. Extensive experiment results demonstrate the superiority of KPGNN over various baselines.