Abstract:Convolutional neural networks are widely used in various segmentation tasks in medical images. However, they are challenged to learn global features adaptively due to the inherent locality of convolutional operations. In contrast, MLP Mixers are proposed as a backbone to learn global information across channels with low complexity. However, they cannot capture spatial features efficiently. Additionally, they lack effective mechanisms to fuse and mix features adaptively. To tackle these limitations, we propose a novel Dynamic Decomposed Mixer module. It is designed to employ novel Mixers to extract features and aggregate information across different spatial locations and channels. Additionally, it employs novel dynamic mixing mechanisms to model inter-dependencies between channel and spatial feature representations and to fuse them adaptively. Subsequently, we incorporate it into a U-shaped Transformer-based architecture to generate a novel network, termed the Dynamic Decomposed MLP Mixer. We evaluated it for medical image segmentation on two datasets, and it achieved superior segmentation performance than other state-of-the-art methods.
Abstract:With the fact that the knowledge in each field in university is keeping increasing, the number of university courses is becoming larger, and the content and curriculum system is becoming much more complicated than it used to be, which bring many inconveniences to the course arrangement and analysis. In this paper, we aim to construct a method to visualize all courses based on Google Knowledge Graph. By analysing the properties of the courses and their preceding requirements, we want to extract the relationship between the precursors and the successors, so as to build the knowledge graph of the curriculum system. Using the graph database Neo4j [7] as the core aspect for data storage and display for our new curriculum system will be our approach to implement our knowledge graph. Based on this graph, the venation relationship between courses can be clearly analysed, and some difficult information can be obtained, which can help to combine the outline of courses and the need to quickly query the venation information of courses.
Abstract:Using histopathological images to automatically classify cancer is a difficult task for accurately detecting cancer, especially to identify metastatic cancer in small image patches obtained from larger digital pathology scans. Computer diagnosis technology has attracted wide attention from researchers. In this paper, we propose a noval method which combines the deep learning algorithm in image classification, the DenseNet169 framework and Rectified Adam optimization algorithm. The connectivity pattern of DenseNet is direct connections from any layer to all consecutive layers, which can effectively improve the information flow between different layers. With the fact that RAdam is not easy to fall into a local optimal solution, and it can converge quickly in model training. The experimental results shows that our model achieves superior performance over the other classical convolutional neural networks approaches, such as Vgg19, Resnet34, Resnet50. In particular, the Auc-Roc score of our DenseNet169 model is 1.77% higher than Vgg19 model, and the Accuracy score is 1.50% higher. Moreover, we also study the relationship between loss value and batches processed during the training stage and validation stage, and obtain some important and interesting findings.