Abstract:Accurate prediction of metro traffic is crucial for optimizing metro scheduling and enhancing overall transport efficiency. Analyzing fine-grained and comprehensive relations among stations effectively is imperative for metro Origin-Destination (OD) prediction. However, existing metro OD models either mix information from multiple OD pairs from the station's perspective or exclusively focus on a subset of OD pairs. These approaches may overlook fine-grained relations among OD pairs, leading to difficulties in predicting potential anomalous conditions. To address these challenges, we analyze traffic variations from the perspective of all OD pairs and propose a fine-grained spatial-temporal MLP architecture for metro OD prediction, namely ODMixer. Specifically, our ODMixer has double-branch structure and involves the Channel Mixer, the Multi-view Mixer, and the Bidirectional Trend Learner. The Channel Mixer aims to capture short-term temporal relations among OD pairs, the Multi-view Mixer concentrates on capturing relations from both origin and destination perspectives. To model long-term temporal relations, we introduce the Bidirectional Trend Learner. Extensive experiments on two large-scale metro OD prediction datasets HZMOD and SHMO demonstrate the advantages of our ODMixer. The code will be available.