Abstract:The paramount challenge in audio-driven One-shot Talking Head Animation (ADOS-THA) lies in capturing subtle imperceptible changes between adjacent video frames. Inherently, the temporal relationship of adjacent audio clips is highly correlated with that of the corresponding adjacent video frames, offering supplementary information that can be pivotal for guiding and supervising talking head animations. In this work, we propose to learn audio-visual correlations and integrate the correlations to help enhance feature representation and regularize final generation by a novel Temporal Audio-Visual Correlation Embedding (TAVCE) framework. Specifically, it first learns an audio-visual temporal correlation metric, ensuring the temporal audio relationships of adjacent clips are aligned with the temporal visual relationships of corresponding adjacent video frames. Since the temporal audio relationship contains aligned information about the visual frame, we first integrate it to guide learning more representative features via a simple yet effective channel attention mechanism. During training, we also use the alignment correlations as an additional objective to supervise generating visual frames. We conduct extensive experiments on several publicly available benchmarks (i.e., HDTF, LRW, VoxCeleb1, and VoxCeleb2) to demonstrate its superiority over existing leading algorithms.
Abstract:Speech-preserving facial expression manipulation (SPFEM) aims to modify a talking head to display a specific reference emotion while preserving the mouth animation of source spoken contents. Thus, emotion and content information existing in reference and source inputs can provide direct and accurate supervision signals for SPFEM models. However, the intrinsic intertwining of these elements during the talking process poses challenges to their effectiveness as supervisory signals. In this work, we propose to learn content and emotion priors as guidance augmented with contrastive learning to learn decoupled content and emotion representation via an innovative Contrastive Decoupled Representation Learning (CDRL) algorithm. Specifically, a Contrastive Content Representation Learning (CCRL) module is designed to learn audio feature, which primarily contains content information, as content priors to guide learning content representation from the source input. Meanwhile, a Contrastive Emotion Representation Learning (CERL) module is proposed to make use of a pre-trained visual-language model to learn emotion prior, which is then used to guide learning emotion representation from the reference input. We further introduce emotion-aware and emotion-augmented contrastive learning to train CCRL and CERL modules, respectively, ensuring learning emotion-independent content representation and content-independent emotion representation. During SPFEM model training, the decoupled content and emotion representations are used to supervise the generation process, ensuring more accurate emotion manipulation together with audio-lip synchronization. Extensive experiments and evaluations on various benchmarks show the effectiveness of the proposed algorithm.
Abstract:Recently, the application of diffusion models in super-resolution tasks has become a popular research direction. Existing work is focused on fully migrating diffusion models to SR tasks. The diffusion model is proposed in the field of image generation, so in order to make the generated results diverse, the diffusion model combines random Gaussian noise and distributed sampling to increase the randomness of the model. However, the essence of super-resolution tasks requires the model to generate high-resolution images with fidelity. Excessive addition of random factors can result in the model generating detailed information that does not belong to the HR image. To address this issue, we propose a new diffusion model called Deltadiff, which uses only residuals between images for diffusion, making the entire diffusion process more stable. The experimental results show that our method surpasses state-of-the-art models and generates results with better fidelity. Our code and model are publicly available at https://github.com/continueyang/DeltaDiff
Abstract:Recent advances in face super-resolution research have utilized the Transformer architecture. This method processes the input image into a series of small patches. However, because of the strong correlation between different facial components in facial images. When it comes to super-resolution of low-resolution images, existing algorithms cannot handle the relationships between patches well, resulting in distorted facial components in the super-resolution results. To solve the problem, we propose a transformer architecture based on graph neural networks called graph vision transformer network. We treat each patch as a graph node and establish an adjacency matrix based on the information between patches. In this way, the patch only interacts between neighboring patches, further processing the relationship of facial components. Quantitative and visualization experiments have underscored the superiority of our algorithm over state-of-the-art techniques. Through detailed comparisons, we have demonstrated that our algorithm possesses more advanced super-resolution capabilities, particularly in enhancing facial components. The PyTorch code is available at https://github.com/continueyang/GVTNet
Abstract:Recently, Large language models (LLMs) with in-context learning have demonstrated remarkable potential in handling neural machine translation. However, existing evidence shows that LLMs are prompt-sensitive and it is sub-optimal to apply the fixed prompt to any input for downstream machine translation tasks. To address this issue, we propose an adaptive few-shot prompting (AFSP) framework to automatically select suitable translation demonstrations for various source input sentences to further elicit the translation capability of an LLM for better machine translation. First, we build a translation demonstration retrieval module based on LLM's embedding to retrieve top-k semantic-similar translation demonstrations from aligned parallel translation corpus. Rather than using other embedding models for semantic demonstration retrieval, we build a hybrid demonstration retrieval module based on the embedding layer of the deployed LLM to build better input representation for retrieving more semantic-related translation demonstrations. Then, to ensure better semantic consistency between source inputs and target outputs, we force the deployed LLM itself to generate multiple output candidates in the target language with the help of translation demonstrations and rerank these candidates. Besides, to better evaluate the effectiveness of our AFSP framework on the latest language and extend the research boundary of neural machine translation, we construct a high-quality diplomatic Chinese-English parallel dataset that consists of 5,528 parallel Chinese-English sentences. Finally, extensive experiments on the proposed diplomatic Chinese-English parallel dataset and the United Nations Parallel Corpus (Chinese-English part) show the effectiveness and superiority of our proposed AFSP.
Abstract:Multi-label recognition with partial labels (MLR-PL), in which only some labels are known while others are unknown for each image, is a practical task in computer vision, since collecting large-scale and complete multi-label datasets is difficult in real application scenarios. Recently, vision language models (e.g. CLIP) have demonstrated impressive transferability to downstream tasks in data limited or label limited settings. However, current CLIP-based methods suffer from semantic confusion in MLR task due to the lack of fine-grained information in the single global visual and textual representation for all categories. In this work, we address this problem by introducing a semantic decoupling module and a category-specific prompt optimization method in CLIP-based framework. Specifically, the semantic decoupling module following the visual encoder learns category-specific feature maps by utilizing the semantic-guided spatial attention mechanism. Moreover, the category-specific prompt optimization method is introduced to learn text representations aligned with category semantics. Therefore, the prediction of each category is independent, which alleviate the semantic confusion problem. Extensive experiments on Microsoft COCO 2014 and Pascal VOC 2007 datasets demonstrate that the proposed framework significantly outperforms current state-of-art methods with a simpler model structure. Additionally, visual analysis shows that our method effectively separates information from different categories and achieves better performance compared to CLIP-based baseline method.
Abstract:Modern visual recognition models often display overconfidence due to their reliance on complex deep neural networks and one-hot target supervision, resulting in unreliable confidence scores that necessitate calibration. While current confidence calibration techniques primarily address single-label scenarios, there is a lack of focus on more practical and generalizable multi-label contexts. This paper introduces the Multi-Label Confidence Calibration (MLCC) task, aiming to provide well-calibrated confidence scores in multi-label scenarios. Unlike single-label images, multi-label images contain multiple objects, leading to semantic confusion and further unreliability in confidence scores. Existing single-label calibration methods, based on label smoothing, fail to account for category correlations, which are crucial for addressing semantic confusion, thereby yielding sub-optimal performance. To overcome these limitations, we propose the Dynamic Correlation Learning and Regularization (DCLR) algorithm, which leverages multi-grained semantic correlations to better model semantic confusion for adaptive regularization. DCLR learns dynamic instance-level and prototype-level similarities specific to each category, using these to measure semantic correlations across different categories. With this understanding, we construct adaptive label vectors that assign higher values to categories with strong correlations, thereby facilitating more effective regularization. We establish an evaluation benchmark, re-implementing several advanced confidence calibration algorithms and applying them to leading multi-label recognition (MLR) models for fair comparison. Through extensive experiments, we demonstrate the superior performance of DCLR over existing methods in providing reliable confidence scores in multi-label scenarios.
Abstract:Recently, commonsense learning has been a hot topic in image-text matching. Although it can describe more graphic correlations, commonsense learning still has some shortcomings: 1) The existing methods are based on triplet semantic similarity measurement loss, which cannot effectively match the intractable negative in image-text sample pairs. 2) The weak generalization ability of the model leads to the poor effect of image and text matching on large-scale datasets. According to these shortcomings. This paper proposes a novel image-text matching model, called Active Mining Sample Pair Semantics image-text matching model (AMSPS). Compared with the single semantic learning mode of the commonsense learning model with triplet loss function, AMSPS is an active learning idea. Firstly, the proposed Adaptive Hierarchical Reinforcement Loss (AHRL) has diversified learning modes. Its active learning mode enables the model to more focus on the intractable negative samples to enhance the discriminating ability. In addition, AMSPS can also adaptively mine more hidden relevant semantic representations from uncommented items, which greatly improves the performance and generalization ability of the model. Experimental results on Flickr30K and MSCOCO universal datasets show that our proposed method is superior to advanced comparison methods.
Abstract:We aim at incorporating explicit shape information into current 3D organ segmentation models. Different from previous works, we formulate shape learning as an in-painting task, which is named Masked Label Mask Modeling (MLM). Through MLM, learnable mask tokens are fed into transformer blocks to complete the label mask of organ. To transfer MLM shape knowledge to target, we further propose a novel shape-aware self-distillation with both in-painting reconstruction loss and pseudo loss. Extensive experiments on five public organ segmentation datasets show consistent improvements over prior arts with at least 1.2 points gain in the Dice score, demonstrating the effectiveness of our method in challenging unsupervised domain adaptation scenarios including: (1) In-domain organ segmentation; (2) Unseen domain segmentation and (3) Unseen organ segmentation. We hope this work will advance shape analysis and geometric learning in medical imaging.
Abstract:Accurately predicting anesthetic effects is essential for target-controlled infusion systems. The traditional (PK-PD) models for Bispectral index (BIS) prediction require manual selection of model parameters, which can be challenging in clinical settings. Recently proposed deep learning methods can only capture general trends and may not predict abrupt changes in BIS. To address these issues, we propose a transformer-based method for predicting the depth of anesthesia (DOA) using drug infusions of propofol and remifentanil. Our method employs long short-term memory (LSTM) and gate residual network (GRN) networks to improve the efficiency of feature fusion and applies an attention mechanism to discover the interactions between the drugs. We also use label distribution smoothing and reweighting losses to address data imbalance. Experimental results show that our proposed method outperforms traditional PK-PD models and previous deep learning methods, effectively predicting anesthetic depth under sudden and deep anesthesia conditions.