Abstract:Unsupervised visible-infrared person re-identification (USL-VI-ReID) aims to retrieve pedestrian images of the same identity from different modalities without annotations. While prior work focuses on establishing cross-modality pseudo-label associations to bridge the modality-gap, they ignore maintaining the instance-level homogeneous and heterogeneous consistency in pseudo-label space, resulting in coarse associations. In response, we introduce a Modality-Unified Label Transfer (MULT) module that simultaneously accounts for both homogeneous and heterogeneous fine-grained instance-level structures, yielding high-quality cross-modality label associations. It models both homogeneous and heterogeneous affinities, leveraging them to define the inconsistency for the pseudo-labels and then minimize it, leading to pseudo-labels that maintain alignment across modalities and consistency within intra-modality structures. Additionally, a straightforward plug-and-play Online Cross-memory Label Refinement (OCLR) module is proposed to further mitigate the impact of noisy pseudo-labels while simultaneously aligning different modalities, coupled with a Modality-Invariant Representation Learning (MIRL) framework. Experiments demonstrate that our proposed method outperforms existing USL-VI-ReID methods, highlighting the superiority of our MULT in comparison to other cross-modality association methods. The code will be available.
Abstract:Unsupervised learning visible-infrared person re-identification (USL-VI-ReID) aims at learning modality-invariant features from unlabeled cross-modality dataset, which is crucial for practical applications in video surveillance systems. The key to essentially address the USL-VI-ReID task is to solve the cross-modality data association problem for further heterogeneous joint learning. To address this issue, we propose a Dual Optimal Transport Label Assignment (DOTLA) framework to simultaneously assign the generated labels from one modality to its counterpart modality. The proposed DOTLA mechanism formulates a mutual reinforcement and efficient solution to cross-modality data association, which could effectively reduce the side-effects of some insufficient and noisy label associations. Besides, we further propose a cross-modality neighbor consistency guided label refinement and regularization module, to eliminate the negative effects brought by the inaccurate supervised signals, under the assumption that the prediction or label distribution of each example should be similar to its nearest neighbors. Extensive experimental results on the public SYSU-MM01 and RegDB datasets demonstrate the effectiveness of the proposed method, surpassing existing state-of-the-art approach by a large margin of 7.76% mAP on average, which even surpasses some supervised VI-ReID methods.
Abstract:Unsupervised visible-infrared person re-identification (USL-VI-ReID) aims to match pedestrian images of the same identity from different modalities without annotations. Existing works mainly focus on alleviating the modality gap by aligning instance-level features of the unlabeled samples. However, the relationships between cross-modality clusters are not well explored. To this end, we propose a novel bilateral cluster matching-based learning framework to reduce the modality gap by matching cross-modality clusters. Specifically, we design a Many-to-many Bilateral Cross-Modality Cluster Matching (MBCCM) algorithm through optimizing the maximum matching problem in a bipartite graph. Then, the matched pairwise clusters utilize shared visible and infrared pseudo-labels during the model training. Under such a supervisory signal, a Modality-Specific and Modality-Agnostic (MSMA) contrastive learning framework is proposed to align features jointly at a cluster-level. Meanwhile, the cross-modality Consistency Constraint (CC) is proposed to explicitly reduce the large modality discrepancy. Extensive experiments on the public SYSU-MM01 and RegDB datasets demonstrate the effectiveness of the proposed method, surpassing state-of-the-art approaches by a large margin of 8.76% mAP on average.
Abstract:ROI extraction is an active but challenging task in remote sensing because of the complicated landform, the complex boundaries and the requirement of annotations. Weakly supervised learning (WSL) aims at learning a mapping from input image to pixel-wise prediction under image-wise labels, which can dramatically decrease the labor cost. However, due to the imprecision of labels, the accuracy and time consumption of WSL methods are relatively unsatisfactory. In this paper, we propose a two-step ROI extraction based on contractive learning. Firstly, we present to integrate multiscale Grad-CAM to obtain pseudo pixelwise annotations with well boundaries. Then, to reduce the compact of misjudgments in pseudo annotations, we construct a contrastive learning strategy to encourage the features inside ROI as close as possible and separate background features from foreground features. Comprehensive experiments demonstrate the superiority of our proposal. Code is available at https://github.com/HE-Lingfeng/ROI-Extraction