https://github.com/gingasan/delta-engine}.
In this paper, we focus on \emph{virtual world}, a cyberspace where people can live in. An ideal virtual world shares great similarity with our real world. One of the crucial aspects is its evolving nature, reflected by the individuals' capacity to grow and thereby influence the objective world. Such dynamics is unpredictable and beyond the reach of existing systems. For this, we propose a special engine called \emph{Delta-Engine} to drive this virtual world. $\Delta$ associates the world's evolution to the engine's expansion. A delta-engine consists of a base engine and a neural proxy. Given an observation, the proxy generates new code based on the base engine through the process of \emph{incremental prediction}. This paper presents a full-stack introduction to the delta-engine. The key feature of the delta-engine is its scalability to unknown elements within the world, Technically, it derives from the prefect co-work of the neural proxy and the base engine, and the alignment with high-quality data. We an engine-oriented fine-tuning method that embeds the base engine into the proxy. We then discuss a human-AI collaborative design process to produce novel and interesting data efficiently. Eventually, we propose three evaluation principles to comprehensively assess the performance of a delta engine: naive evaluation, incremental evaluation, and adversarial evaluation. Our code, data, and models are open-sourced at \url{