Abstract:Recent progress in weakly supervised object detection is featured by a combination of multiple instance detection networks (MIDN) and ordinal online refinement. However, with only image-level annotation, MIDN inevitably assigns high scores to some unexpected region proposals when generating pseudo labels. These inaccurate high-scoring region proposals will mislead the training of subsequent refinement modules and thus hamper the detection performance. In this work, we explore how to ameliorate the quality of pseudo-labeling in MIDN. Formally, we devise Cyclic-Bootstrap Labeling (CBL), a novel weakly supervised object detection pipeline, which optimizes MIDN with rank information from a reliable teacher network. Specifically, we obtain this teacher network by introducing a weighted exponential moving average strategy to take advantage of various refinement modules. A novel class-specific ranking distillation algorithm is proposed to leverage the output of weighted ensembled teacher network for distilling MIDN with rank information. As a result, MIDN is guided to assign higher scores to accurate proposals among their neighboring ones, thus benefiting the subsequent pseudo labeling. Extensive experiments on the prevalent PASCAL VOC 2007 \& 2012 and COCO datasets demonstrate the superior performance of our CBL framework. Code will be available at https://github.com/Yinyf0804/WSOD-CBL/.
Abstract:This study introduces an efficacious approach, Masked Collaborative Contrast (MCC), to emphasize semantic regions in weakly supervised semantic segmentation. MCC adroitly incorporates concepts from masked image modeling and contrastive learning to devise Transformer blocks that induce keys to contract towards semantically pertinent regions. Unlike prevalent techniques that directly eradicate patch regions in the input image when generating masks, we scrutinize the neighborhood relations of patch tokens by exploring masks considering keys on the affinity matrix. Moreover, we generate positive and negative samples in contrastive learning by utilizing the masked local output and contrasting it with the global output. Elaborate experiments on commonly employed datasets evidences that the proposed MCC mechanism effectively aligns global and local perspectives within the image, attaining impressive performance. The source code is available at \url{https://github.com/fwu11/MCC}.
Abstract:Contour-based instance segmentation has been actively studied, thanks to its flexibility and elegance in processing visual objects within complex backgrounds. In this work, we propose a novel deep network architecture, i.e., PolySnake, for contour-based instance segmentation. Motivated by the classic Snake algorithm, the proposed PolySnake achieves superior and robust segmentation performance with an iterative and progressive contour refinement strategy. Technically, PolySnake introduces a recurrent update operator to estimate the object contour iteratively. It maintains a single estimate of the contour that is progressively deformed toward the object boundary. At each iteration, PolySnake builds a semantic-rich representation for the current contour and feeds it to the recurrent operator for further contour adjustment. Through the iterative refinements, the contour finally progressively converges to a stable status that tightly encloses the object instance. Moreover, with a compact design of the recurrent architecture, we ensure the running efficiency under multiple iterations. Extensive experiments are conducted to validate the merits of our method, and the results demonstrate that the proposed PolySnake outperforms the existing contour-based instance segmentation methods on several prevalent instance segmentation benchmarks. The codes and models are available at https://github.com/fh2019ustc/PolySnake.
Abstract:Open-set panoptic segmentation (OPS) problem is a new research direction aiming to perform segmentation for both \known classes and \unknown classes, i.e., the objects ("things") that are never annotated in the training set. The main challenges of OPS are twofold: (1) the infinite possibility of the \unknown object appearances makes it difficult to model them from a limited number of training data. (2) at training time, we are only provided with the "void" category, which essentially mixes the "unknown thing" and "background" classes. We empirically find that directly using "void" category to supervise \known class or "background" without screening will not lead to a satisfied OPS result. In this paper, we propose a divide-and-conquer scheme to develop a two-stage decision process for OPS. We show that by properly combining a \known class discriminator with an additional class-agnostic object prediction head, the OPS performance can be significantly improved. Specifically, we first propose to create a classifier with only \known categories and let the "void" class proposals achieve low prediction probability from those categories. Then we distinguish the "unknown things" from the background by using the additional object prediction head. To further boost performance, we introduce "unknown things" pseudo-labels generated from up-to-date models and a heuristic rule to enrich the training set. Our extensive experimental evaluation shows that our approach significantly improves \unknown class panoptic quality, with more than 30\% relative improvements than the existing best-performed method.