Abstract:In the training process of Deep Reinforcement Learning (DRL), agents require repetitive interactions with the environment. With an increase in training volume and model complexity, it is still a challenging problem to enhance data utilization and explainability of DRL training. This paper addresses these challenges by focusing on the temporal correlations within the time dimension of time series. We propose a novel approach to segment multivariate time series into meaningful subsequences and represent the time series based on these subsequences. Furthermore, the subsequences are employed for causal inference to identify fundamental causal factors that significantly impact training outcomes. We design a module to provide feedback on the causality during DRL training. Several experiments demonstrate the feasibility of our approach in common environments, confirming its ability to enhance the effectiveness of DRL training and impart a certain level of explainability to the training process. Additionally, we extended our approach with priority experience replay algorithm, and experimental results demonstrate the continued effectiveness of our approach.
Abstract:To support emerging applications ranging from holographic communications to extended reality, next-generation mobile wireless communication systems require ultra-fast and energy-efficient baseband processors. Traditional complementary metal-oxide-semiconductor (CMOS)-based baseband processors face two challenges in transistor scaling and the von Neumann bottleneck. To address these challenges, in-memory computing-based baseband processors using resistive random-access memory (RRAM) present an attractive solution. In this paper, we propose and demonstrate RRAM-implemented in-memory baseband processing for the widely adopted multiple-input-multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) air interface. Its key feature is to execute the key operations, including discrete Fourier transform (DFT) and MIMO detection using linear minimum mean square error (L-MMSE) and zero forcing (ZF), in one-step. In addition, RRAM-based channel estimation module is proposed and discussed. By prototyping and simulations, we demonstrate the feasibility of RRAM-based full-fledged communication system in hardware, and reveal it can outperform state-of-the-art baseband processors with a gain of 91.2$\times$ in latency and 671$\times$ in energy efficiency by large-scale simulations. Our results pave a potential pathway for RRAM-based in-memory computing to be implemented in the era of the sixth generation (6G) mobile communications.
Abstract:To support emerging applications ranging from holographic communications to extended reality, next-generation mobile wireless communication systems require ultra-fast and energy-efficient (UFEE) baseband processors. Traditional complementary metal-oxide-semiconductor (CMOS)-based baseband processors face two challenges in transistor scaling and the von Neumann bottleneck. To address these challenges, in-memory computing-based baseband processors using resistive random-access memory (RRAM) present an attractive solution. In this paper, we propose and demonstrate RRAM-based in-memory baseband processing for the widely adopted multiple-input-multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) air interface. Its key feature is to execute the key operations, including discrete Fourier transform (DFT) and MIMO detection using linear minimum mean square error (L-MMSE) and zero forcing (ZF), in one-step. In addition, RRAM-based channel estimation as well as mapper/demapper modules are proposed. By prototyping and simulations, we demonstrate that the RRAM-based full-fledged communication system can significantly outperform its CMOS-based counterpart in terms of speed and energy efficiency by $10^3$ and $10^6$ times, respectively. The results pave a potential pathway for RRAM-based in-memory computing to be implemented in the era of the sixth generation (6G) mobile communications.