Abstract:The 6G mobile networks are differentiated from 5G by two new usage scenarios - distributed sensing and edge AI. Their natural integration, termed integrated sensing and edge AI (ISEA), promised to create a platform for enabling environment perception to make intelligent decisions and take real-time actions. A basic operation in ISEA is for a fusion center to acquire and fuse features of spatial sensing data distributed at many agents. To overcome its communication bottleneck due to multiple access by numerous agents over hostile wireless channels, we propose a novel framework, called Spatial Over-the-Air Fusion (Spatial AirFusion), which exploits radio waveform superposition to aggregate spatially sparse features over the air. The technology is more sophisticated than conventional Over-the-Air Computing (AirComp) as it supports simultaneous aggregation over multiple voxels, which partition the 3D sensing region, and across multiple subcarriers. Its efficiency and robustness are derived from exploitation of both spatial feature sparsity and multiuser channel diversity to intelligently pair voxel-level aggregation tasks and subcarriers to maximize the minimum receive SNR among voxels under instantaneous power constraints. To optimally solve the mixed-integer Voxel-Carrier Pairing and Power Allocation (VoCa-PPA) problem, the proposed approach hinges on two useful results: (1) deriving the optimal power allocation as a closed-form function of voxel-carrier pairing and (2) discovering a useful property of VoCa-PPA that dramatically reduces the solution-space dimensionality. Both a low-complexity greedy algorithm and an optimal tree-search based approach are designed for VoCa-PPA. Extensive simulations using real datasets show that Spatial AirFusion achieves significant error reduction and accuracy improvement compared with conventional AirComp without awareness of spatial sparsity.
Abstract:Sensing is envisioned as a key network function of the 6G mobile networks. Artificial intelligence (AI)-empowered sensing fuses features of multiple sensing views from devices distributed in edge networks for the edge server to perform accurate inference. This process, known as multi-view pooling, creates a communication bottleneck due to multi-access by many devices. To alleviate this issue, we propose a task-oriented simultaneous access scheme for distributed sensing called Over-the-Air Pooling (AirPooling). The existing Over-the-Air Computing (AirComp) technique can be directly applied to enable Average-AirPooling by exploiting the waveform superposition property of a multi-access channel. However, despite being most popular in practice, the over-the-air maximization, called Max-AirPooling, is not AirComp realizable as AirComp addresses a limited subset of functions. We tackle the challenge by proposing the novel generalized AirPooling framework that can be configured to support both Max- and Average-AirPooling by controlling a configuration parameter. The former is realized by adding to AirComp the designed pre-processing at devices and post-processing at the server. To characterize the end-to-end sensing performance, the theory of classification margin is applied to relate the classification accuracy and the AirPooling error. Furthermore, the analysis reveals an inherent tradeoff of Max-AirPooling between the accuracy of the pooling-function approximation and the effectiveness of noise suppression. Using the tradeoff, we optimize the configuration parameter of Max-AirPooling, yielding a sub-optimal closed-form method of adaptive parametric control. Experimental results obtained on real-world datasets show that AirPooling provides sensing accuracies close to those achievable by the traditional digital air interface but dramatically reduces the communication latency.
Abstract:As a new function of 6G networks, edge intelligence refers to the ubiquitous deployment of machine learning and artificial intelligence (AI) algorithms at the network edge to empower many emerging applications ranging from sensing to auto-pilot. To support relevant use cases, including sensing, edge learning, and edge inference, all require transmission of high-dimensional data or AI models over the air. To overcome the bottleneck, we propose a novel framework of SEMantic DAta Sourcing (SEMDAS) for locating semantically matched data sources to efficiently enable edge-intelligence operations. The comprehensive framework comprises new architecture, protocol, semantic matching techniques, and design principles for task-oriented wireless techniques. As the key component of SEMDAS, we discuss a set of machine learning based semantic matching techniques targeting different edge-intelligence use cases. Moreover, for designing task-oriented wireless techniques, we discuss different tradeoffs in SEMDAS systems, propose the new concept of joint semantics-and-channel matching, and point to a number of research opportunities. The SEMDAS framework not only overcomes the said communication bottleneck but also addresses other networking issues including long-distance transmission, sparse connectivity, high-speed mobility, link disruptions, and security. In addition, experimental results using a real dataset are presented to demonstrate the performance gain of SEMDAS.
Abstract:The deployment of inference services at the network edge, called edge inference, offloads computation-intensive inference tasks from mobile devices to edge servers, thereby enhancing the former's capabilities and battery lives. In a multiuser system, the joint allocation of communication-and-computation ($\text{C}^\text{2}$) resources (i.e., scheduling and bandwidth allocation) is made challenging by adopting efficient inference techniques, batching and early exiting, and further complicated by the heterogeneity in users' requirements on accuracy and latency. Batching groups multiple tasks into one batch for parallel processing to reduce time-consuming memory access and thereby boosts the throughput (i.e., completed task per second). On the other hand, early exiting allows a task to exit from a deep-neural network without traversing the whole network to support a tradeoff between accuracy and latency. In this work, we study optimal $\text{C}^\text{2}$ resource allocation with batching and early exiting, which is an NP-complete integer program. A set of efficient algorithms are designed under the criterion of maximum throughput by tackling the challenge. Experimental results demonstrate that both optimal and sub-optimal $\text{C}^\text{2}$ resource allocation algorithms can leverage integrated batching and early exiting to achieve 200% throughput gain over conventional schemes.
Abstract:In edge inference, an edge server provides remote-inference services to edge devices. This requires the edge devices to upload high-dimensional features of data samples over resource-constrained wireless channels, which creates a communication bottleneck. The conventional solution of feature pruning requires that the device has access to the inference model, which is unavailable in the current scenario of split inference. To address this issue, we propose the progressive feature transmission (ProgressFTX) protocol, which minimizes the overhead by progressively transmitting features until a target confidence level is reached. The optimal control policy of the protocol to accelerate inference is derived and it comprises two key operations. The first is importance-aware feature selection at the server, for which it is shown to be optimal to select the most important features, characterized by the largest discriminant gains of the corresponding feature dimensions. The second is transmission-termination control by the server for which the optimal policy is shown to exhibit a threshold structure. Specifically, the transmission is stopped when the incremental uncertainty reduction by further feature transmission is outweighed by its communication cost. The indices of the selected features and transmission decision are fed back to the device in each slot. The optimal policy is first derived for the tractable case of linear classification and then extended to the more complex case of classification using a convolutional neural network. Both Gaussian and fading channels are considered. Experimental results are obtained for both a statistical data model and a real dataset. It is seen that ProgressFTX can substantially reduce the communication latency compared to conventional feature pruning and random feature transmission.
Abstract:In 1940s, Claude Shannon developed the information theory focusing on quantifying the maximum data rate that can be supported by a communication channel. Guided by this, the main theme of wireless system design up until 5G was the data rate maximization. In his theory, the semantic aspect and meaning of messages were treated as largely irrelevant to communication. The classic theory started to reveal its limitations in the modern era of machine intelligence, consisting of the synergy between IoT and AI. By broadening the scope of the classic framework, in this article we present a view of semantic communication (SemCom) and conveying meaning through the communication systems. We address three communication modalities, human-to-human (H2H), human-to-machine (H2M), and machine-to-machine (M2M) communications. The latter two, the main theme of the article, represent the paradigm shift in communication and computing. H2M SemCom refers to semantic techniques for conveying meanings understandable by both humans and machines so that they can interact. M2M SemCom refers to effectiveness techniques for efficiently connecting machines such that they can effectively execute a specific computation task in a wireless network. The first part of the article introduces SemCom principles including encoding, system architecture, and layer-coupling and end-to-end design approaches. The second part focuses on specific techniques for application areas of H2M (human and AI symbiosis, recommendation, etc.) and M2M SemCom (distributed learning, split inference, etc.) Finally, we discuss the knowledge graphs approach for designing SemCom systems. We believe that this comprehensive introduction will provide a useful guide into the emerging area of SemCom that is expected to play an important role in 6G featuring connected intelligence and integrated sensing, computing, communication, and control.