Abstract:We introduce GenAI4UQ, a software package for inverse uncertainty quantification in model calibration, parameter estimation, and ensemble forecasting in scientific applications. GenAI4UQ leverages a generative artificial intelligence (AI) based conditional modeling framework to address the limitations of traditional inverse modeling techniques, such as Markov Chain Monte Carlo methods. By replacing computationally intensive iterative processes with a direct, learned mapping, GenAI4UQ enables efficient calibration of model input parameters and generation of output predictions directly from observations. The software's design allows for rapid ensemble forecasting with robust uncertainty quantification, while maintaining high computational and storage efficiency. GenAI4UQ simplifies the model training process through built-in auto-tuning of hyperparameters, making it accessible to users with varying levels of expertise. Its conditional generative framework ensures versatility, enabling applicability across a wide range of scientific domains. At its core, GenAI4UQ transforms the paradigm of inverse modeling by providing a fast, reliable, and user-friendly solution. It empowers researchers and practitioners to quickly estimate parameter distributions and generate model predictions for new observations, facilitating efficient decision-making and advancing the state of uncertainty quantification in computational modeling. (The code and data are available at https://github.com/patrickfan/GenAI4UQ).
Abstract:We propose nonuniform data-driven parameter distributions for neural network initialization based on derivative data of the function to be approximated. These parameter distributions are developed in the context of non-parametric regression models based on shallow neural networks, and compare favorably to well-established uniform random feature models based on conventional weight initialization. We address the cases of Heaviside and ReLU activation functions, and their smooth approximations (sigmoid and softplus), and use recent results on the harmonic analysis and sparse representation of neural networks resulting from fully trained optimal networks. Extending analytic results that give exact representation, we obtain densities that concentrate in regions of the parameter space corresponding to neurons that are well suited to model the local derivatives of the unknown function. Based on these results, we suggest simplifications of these exact densities based on approximate derivative data in the input points that allow for very efficient sampling and lead to performance of random feature models close to optimal networks in several scenarios.
Abstract:In the 6G era, real-time radio resource monitoring and management are urged to support diverse wireless-empowered applications. This calls for fast and accurate estimation on the distribution of the radio resources, which is usually represented by the spatial signal power strength over the geographical environment, known as a radio map. In this paper, we present a cooperative radio map estimation (CRME) approach enabled by the generative adversarial network (GAN), called as GAN-CRME, which features fast and accurate radio map estimation without the transmitters' information. The radio map is inferred by exploiting the interaction between distributed received signal strength (RSS) measurements at mobile users and the geographical map using a deep neural network estimator, resulting in low data-acquisition cost and computational complexity. Moreover, a GAN-based learning algorithm is proposed to boost the inference capability of the deep neural network estimator by exploiting the power of generative AI. Simulation results showcase that the proposed GAN-CRME is even capable of coarse error-correction when the geographical map information is inaccurate.
Abstract:The impressive expressive power of deep neural networks (DNNs) underlies their widespread applicability. However, while the theoretical capacity of deep architectures is high, the practical expressive power achieved through successful training often falls short. Building on the insights gained from Neural ODEs, which explore the depth of DNNs as a continuous variable, in this work, we generalize the traditional fully connected DNN through the concept of continuous width. In the Generalized Deep Neural Network (GDNN), the traditional notion of neurons in each layer is replaced by a continuous state function. Using the finite rank parameterization of the weight integral kernel, we establish that GDNN can be obtained by employing the Integral Activation Transform (IAT) as activation layers within the traditional DNN framework. The IAT maps the input vector to a function space using some basis functions, followed by nonlinear activation in the function space, and then extracts information through the integration with another collection of basis functions. A specific variant, IAT-ReLU, featuring the ReLU nonlinearity, serves as a smooth generalization of the scalar ReLU activation. Notably, IAT-ReLU exhibits a continuous activation pattern when continuous basis functions are employed, making it smooth and enhancing the trainability of the DNN. Our numerical experiments demonstrate that IAT-ReLU outperforms regular ReLU in terms of trainability and better smoothness.
Abstract:Semantic communication is widely touted as a key technology for propelling the sixth-generation (6G) wireless networks. However, providing effective semantic representation is quite challenging in practice. To address this issue, this article takes a crack at exploiting semantic knowledge base (KB) to usher in a new era of generative semantic communication. Via semantic KB, source messages can be characterized in low-dimensional subspaces without compromising their desired meaning, thus significantly enhancing the communication efficiency. The fundamental principle of semantic KB is first introduced, and a generative semantic communication architecture is developed by presenting three sub-KBs, namely source, task, and channel KBs. Then, the detailed construction approaches for each sub-KB are described, followed by their utilization in terms of semantic coding and transmission. A case study is also provided to showcase the superiority of generative semantic communication over conventional syntactic communication and classical semantic communication. In a nutshell, this article establishes a scientific foundation for the exciting uncharted frontier of generative semantic communication.
Abstract:We present a supervised learning framework of training generative models for density estimation. Generative models, including generative adversarial networks, normalizing flows, variational auto-encoders, are usually considered as unsupervised learning models, because labeled data are usually unavailable for training. Despite the success of the generative models, there are several issues with the unsupervised training, e.g., requirement of reversible architectures, vanishing gradients, and training instability. To enable supervised learning in generative models, we utilize the score-based diffusion model to generate labeled data. Unlike existing diffusion models that train neural networks to learn the score function, we develop a training-free score estimation method. This approach uses mini-batch-based Monte Carlo estimators to directly approximate the score function at any spatial-temporal location in solving an ordinary differential equation (ODE), corresponding to the reverse-time stochastic differential equation (SDE). This approach can offer both high accuracy and substantial time savings in neural network training. Once the labeled data are generated, we can train a simple fully connected neural network to learn the generative model in the supervised manner. Compared with existing normalizing flow models, our method does not require to use reversible neural networks and avoids the computation of the Jacobian matrix. Compared with existing diffusion models, our method does not need to solve the reverse-time SDE to generate new samples. As a result, the sampling efficiency is significantly improved. We demonstrate the performance of our method by applying it to a set of 2D datasets as well as real data from the UCI repository.
Abstract:We propose an ensemble score filter (EnSF) for solving high-dimensional nonlinear filtering problems with superior accuracy. A major drawback of existing filtering methods, e.g., particle filters or ensemble Kalman filters, is the low accuracy in handling high-dimensional and highly nonlinear problems. EnSF attacks this challenge by exploiting the score-based diffusion model, defined in a pseudo-temporal domain, to characterizing the evolution of the filtering density. EnSF stores the information of the recursively updated filtering density function in the score function, in stead of storing the information in a set of finite Monte Carlo samples (used in particle filters and ensemble Kalman filters). Unlike existing diffusion models that train neural networks to approximate the score function, we develop a training-free score estimation that uses mini-batch-based Monte Carlo estimator to directly approximate the score function at any pseudo-spatial-temporal location, which provides sufficient accuracy in solving high-dimensional nonlinear problems as well as saves tremendous amount of time spent on training neural networks. Another essential aspect of EnSF is its analytical update step, gradually incorporating data information into the score function, which is crucial in mitigating the degeneracy issue faced when dealing with very high-dimensional nonlinear filtering problems. High-dimensional Lorenz systems are used to demonstrate the performance of our method. EnSF provides surprisingly impressive performance in reliably tracking extremely high-dimensional Lorenz systems (up to 1,000,000 dimension) with highly nonlinear observation processes, which is a well-known challenging problem for existing filtering methods.
Abstract:To speed up online testing, adaptive traffic experimentation through multi-armed bandit algorithms is rising as an essential complementary alternative to the fixed horizon A/B testing. Based on recent research on best arm identification and statistical inference with adaptively collected data, this paper derives and evaluates four Bayesian batch bandit algorithms (NB-TS, WB-TS, NB-TTTS, WB-TTTS), which are combinations of two ways of weighting batches (Naive Batch and Weighted Batch) and two Bayesian sampling strategies (Thompson Sampling and Top-Two Thompson Sampling) to adaptively determine traffic allocation. These derived Bayesian sampling algorithms are practically based on summary batch statistics of a reward metric for pilot experiments, where one of the combination WB-TTTS in this paper seems to be newly discussed. The comprehensive evaluation on the four Bayesian sampling algorithms covers trustworthiness, sensitivity and regret of a testing methodology. Moreover, the evaluation includes 4 real-world eBay experiments and 40 reproducible synthetic experiments to reveal the learnings, which covers both stationary and non-stationary situations. Our evaluation reveals that, (a) There exist false positives inflation with equivalent best arms, while seldom discussed in literatures; (b) To control false positives, connections between convergence of posterior optimal probabilities and neutral posterior reshaping are discovered; (c) WB-TTTS shows competitive recall, higher precision, and robustness against non-stationary trend; (d) NB-TS outperforms on minimizing regret trials except on precision and robustness; (e) WB-TTTS is a promising alternative if regret of A/B Testing is affordable, otherwise NB-TS is still a powerful choice with regret consideration for pilot experiments.
Abstract:Transfer learning for partial differential equations (PDEs) is to develop a pre-trained neural network that can be used to solve a wide class of PDEs. Existing transfer learning approaches require much information of the target PDEs such as its formulation and/or data of its solution for pre-training. In this work, we propose to construct transferable neural feature spaces from purely function approximation perspectives without using PDE information. The construction of the feature space involves re-parameterization of the hidden neurons and uses auxiliary functions to tune the resulting feature space. Theoretical analysis shows the high quality of the produced feature space, i.e., uniformly distributed neurons. Extensive numerical experiments verify the outstanding performance of our method, including significantly improved transferability, e.g., using the same feature space for various PDEs with different domains and boundary conditions, and the superior accuracy, e.g., several orders of magnitude smaller mean squared error than the state of the art methods.
Abstract:Semantic communication is an increasingly popular framework for wireless image transmission due to its high communication efficiency. With the aid of the joint-source-and-channel (JSC) encoder implemented by neural network, semantic communication directly maps original images into symbol sequences containing semantic information. Compared with the traditional separate source and channel coding design used in bitlevel communication systems, semantic communication systems are known to be more efficient and accurate especially in the low signal-to-the-noise ratio (SNR) regime. This thus prompts an critical while yet to be tackled issue of security in semantic communication: it makes the eavesdropper more easier to crack the semantic information as it can be decoded even in a quite noisy channel. In this letter, we develop a semantic communication framework that accounts for both semantic meaning decoding efficiency and its risk of privacy leakage. To achieve this, targeting wireless image transmission, we on the one hand propose an JSC autoencoder featuring residual for efficient semantic meaning extraction and transmission, and on the other hand, propose a data-driven scheme that balances the efficiency-privacy tradeoff. Extensive experimental results are provided to show the effectiveness and robustness of the proposed scheme.