Abstract:We introduce GenAI4UQ, a software package for inverse uncertainty quantification in model calibration, parameter estimation, and ensemble forecasting in scientific applications. GenAI4UQ leverages a generative artificial intelligence (AI) based conditional modeling framework to address the limitations of traditional inverse modeling techniques, such as Markov Chain Monte Carlo methods. By replacing computationally intensive iterative processes with a direct, learned mapping, GenAI4UQ enables efficient calibration of model input parameters and generation of output predictions directly from observations. The software's design allows for rapid ensemble forecasting with robust uncertainty quantification, while maintaining high computational and storage efficiency. GenAI4UQ simplifies the model training process through built-in auto-tuning of hyperparameters, making it accessible to users with varying levels of expertise. Its conditional generative framework ensures versatility, enabling applicability across a wide range of scientific domains. At its core, GenAI4UQ transforms the paradigm of inverse modeling by providing a fast, reliable, and user-friendly solution. It empowers researchers and practitioners to quickly estimate parameter distributions and generate model predictions for new observations, facilitating efficient decision-making and advancing the state of uncertainty quantification in computational modeling. (The code and data are available at https://github.com/patrickfan/GenAI4UQ).
Abstract:Machine learning (ML) is a revolutionary technology with demonstrable applications across multiple disciplines. Within the Earth science community, ML has been most visible for weather forecasting, producing forecasts that rival modern physics-based models. Given the importance of deepening our understanding and improving predictions of the Earth system on all time scales, efforts are now underway to develop forecasting models into Earth-system models (ESMs), capable of representing all components of the coupled Earth system (or their aggregated behavior) and their response to external changes. Modeling the Earth system is a much more difficult problem than weather forecasting, not least because the model must represent the alternate (e.g., future) coupled states of the system for which there are no historical observations. Given that the physical principles that enable predictions about the response of the Earth system are often not explicitly coded in these ML-based models, demonstrating the credibility of ML-based ESMs thus requires us to build evidence of their consistency with the physical system. To this end, this paper puts forward five recommendations to enhance comprehensive, standardized, and independent evaluation of ML-based ESMs to strengthen their credibility and promote their wider use.
Abstract:Accurate long-term predictions are the foundations for many machine learning applications and decision-making processes. Traditional time series approaches for prediction often focus on either autoregressive modeling, which relies solely on past observations of the target ``endogenous variables'', or forward modeling, which considers only current covariate drivers ``exogenous variables''. However, effectively integrating past endogenous and past exogenous with current exogenous variables remains a significant challenge. In this paper, we propose ExoTST, a novel transformer-based framework that effectively incorporates current exogenous variables alongside past context for improved time series prediction. To integrate exogenous information efficiently, ExoTST leverages the strengths of attention mechanisms and introduces a novel cross-temporal modality fusion module. This module enables the model to jointly learn from both past and current exogenous series, treating them as distinct modalities. By considering these series separately, ExoTST provides robustness and flexibility in handling data uncertainties that arise from the inherent distribution shift between historical and current exogenous variables. Extensive experiments on real-world carbon flux datasets and time series benchmarks demonstrate ExoTST's superior performance compared to state-of-the-art baselines, with improvements of up to 10\% in prediction accuracy. Moreover, ExoTST exhibits strong robustness against missing values and noise in exogenous drivers, maintaining consistent performance in real-world situations where these imperfections are common.
Abstract:The weather and climate domains are undergoing a significant transformation thanks to advances in AI-based foundation models such as FourCastNet, GraphCast, ClimaX and Pangu-Weather. While these models show considerable potential, they are not ready yet for operational use in weather forecasting or climate prediction. This is due to the lack of a data assimilation method as part of their workflow to enable the assimilation of incoming Earth system observations in real time. This limitation affects their effectiveness in predicting complex atmospheric phenomena such as tropical cyclones and atmospheric rivers. To overcome these obstacles, we introduce a generic real-time data assimilation framework and demonstrate its end-to-end performance on the Frontier supercomputer. This framework comprises two primary modules: an ensemble score filter (EnSF), which significantly outperforms the state-of-the-art data assimilation method, namely, the Local Ensemble Transform Kalman Filter (LETKF); and a vision transformer-based surrogate capable of real-time adaptation through the integration of observational data. The ViT surrogate can represent either physics-based models or AI-based foundation models. We demonstrate both the strong and weak scaling of our framework up to 1024 GPUs on the Exascale supercomputer, Frontier. Our results not only illustrate the framework's exceptional scalability on high-performance computing systems, but also demonstrate the importance of supercomputers in real-time data assimilation for weather and climate predictions. Even though the proposed framework is tested only on a benchmark surface quasi-geostrophic (SQG) turbulence system, it has the potential to be combined with existing AI-based foundation models, making it suitable for future operational implementations.
Abstract:Earth system predictability is challenged by the complexity of environmental dynamics and the multitude of variables involved. Current AI foundation models, although advanced by leveraging large and heterogeneous data, are often constrained by their size and data integration, limiting their effectiveness in addressing the full range of Earth system prediction challenges. To overcome these limitations, we introduce the Oak Ridge Base Foundation Model for Earth System Predictability (ORBIT), an advanced vision-transformer model that scales up to 113 billion parameters using a novel hybrid tensor-data orthogonal parallelism technique. As the largest model of its kind, ORBIT surpasses the current climate AI foundation model size by a thousandfold. Performance scaling tests conducted on the Frontier supercomputer have demonstrated that ORBIT achieves 230 to 707 PFLOPS, with scaling efficiency maintained at 78% to 96% across 24,576 AMD GPUs. These breakthroughs establish new advances in AI-driven climate modeling and demonstrate promise to significantly improve the Earth system predictability.
Abstract:We introduce a conditional pseudo-reversible normalizing flow for constructing surrogate models of a physical model polluted by additive noise to efficiently quantify forward and inverse uncertainty propagation. Existing surrogate modeling approaches usually focus on approximating the deterministic component of physical model. However, this strategy necessitates knowledge of noise and resorts to auxiliary sampling methods for quantifying inverse uncertainty propagation. In this work, we develop the conditional pseudo-reversible normalizing flow model to directly learn and efficiently generate samples from the conditional probability density functions. The training process utilizes dataset consisting of input-output pairs without requiring prior knowledge about the noise and the function. Our model, once trained, can generate samples from any conditional probability density functions whose high probability regions are covered by the training set. Moreover, the pseudo-reversibility feature allows for the use of fully-connected neural network architectures, which simplifies the implementation and enables theoretical analysis. We provide a rigorous convergence analysis of the conditional pseudo-reversible normalizing flow model, showing its ability to converge to the target conditional probability density function using the Kullback-Leibler divergence. To demonstrate the effectiveness of our method, we apply it to several benchmark tests and a real-world geologic carbon storage problem.
Abstract:In the upcoming decade, deep learning may revolutionize the natural sciences, enhancing our capacity to model and predict natural occurrences. This could herald a new era of scientific exploration, bringing significant advancements across sectors from drug development to renewable energy. To answer this call, we present DeepSpeed4Science initiative (deepspeed4science.ai) which aims to build unique capabilities through AI system technology innovations to help domain experts to unlock today's biggest science mysteries. By leveraging DeepSpeed's current technology pillars (training, inference and compression) as base technology enablers, DeepSpeed4Science will create a new set of AI system technologies tailored for accelerating scientific discoveries by addressing their unique complexity beyond the common technical approaches used for accelerating generic large language models (LLMs). In this paper, we showcase the early progress we made with DeepSpeed4Science in addressing two of the critical system challenges in structural biology research.
Abstract:Providing accurate uncertainty estimations is essential for producing reliable machine learning models, especially in safety-critical applications such as accelerator systems. Gaussian process models are generally regarded as the gold standard method for this task, but they can struggle with large, high-dimensional datasets. Combining deep neural networks with Gaussian process approximation techniques have shown promising results, but dimensionality reduction through standard deep neural network layers is not guaranteed to maintain the distance information necessary for Gaussian process models. We build on previous work by comparing the use of the singular value decomposition against a spectral-normalized dense layer as a feature extractor for a deep neural Gaussian process approximation model and apply it to a capacitance prediction problem for the High Voltage Converter Modulators in the Oak Ridge Spallation Neutron Source. Our model shows improved distance preservation and predicts in-distribution capacitance values with less than 1% error.
Abstract:We present a multi-module framework based on Conditional Variational Autoencoder (CVAE) to detect anomalies in the power signals coming from multiple High Voltage Converter Modulators (HVCMs). We condition the model with the specific modulator type to capture different representations of the normal waveforms and to improve the sensitivity of the model to identify a specific type of fault when we have limited samples for a given module type. We studied several neural network (NN) architectures for our CVAE model and evaluated the model performance by looking at their loss landscape for stability and generalization. Our results for the Spallation Neutron Source (SNS) experimental data show that the trained model generalizes well to detecting multiple fault types for several HVCM module types. The results of this study can be used to improve the HVCM reliability and overall SNS uptime
Abstract:We propose a novel prediction interval method to learn prediction mean values, lower and upper bounds of prediction intervals from three independently trained neural networks only using the standard mean squared error (MSE) loss, for uncertainty quantification in regression tasks. Our method requires no distributional assumption on data, does not introduce unusual hyperparameters to either the neural network models or the loss function. Moreover, our method can effectively identify out-of-distribution samples and reasonably quantify their uncertainty. Numerical experiments on benchmark regression problems show that our method outperforms the state-of-the-art methods with respect to predictive uncertainty quality, robustness, and identification of out-of-distribution samples.