Abstract:Vector graphics are widely used in digital art and highly favored by designers due to their scalability and layer-wise properties. However, the process of creating and editing vector graphics requires creativity and design expertise, making it a time-consuming task. Recent advancements in text-to-vector (T2V) generation have aimed to make this process more accessible. However, existing T2V methods directly optimize control points of vector graphics paths, often resulting in intersecting or jagged paths due to the lack of geometry constraints. To overcome these limitations, we propose a novel neural path representation by designing a dual-branch Variational Autoencoder (VAE) that learns the path latent space from both sequence and image modalities. By optimizing the combination of neural paths, we can incorporate geometric constraints while preserving expressivity in generated SVGs. Furthermore, we introduce a two-stage path optimization method to improve the visual and topological quality of generated SVGs. In the first stage, a pre-trained text-to-image diffusion model guides the initial generation of complex vector graphics through the Variational Score Distillation (VSD) process. In the second stage, we refine the graphics using a layer-wise image vectorization strategy to achieve clearer elements and structure. We demonstrate the effectiveness of our method through extensive experiments and showcase various applications. The project page is https://intchous.github.io/T2V-NPR.
Abstract:By decoupling substrate resources, network virtualization (NV) is a promising solution for meeting diverse demands and ensuring differentiated quality of service (QoS). In particular, virtual network embedding (VNE) is a critical enabling technology that enhances the flexibility and scalability of network deployment by addressing the coupling of Internet processes and services. However, in the existing works, the black-box nature of deep neural networks (DNNs) limits the analysis, development, and improvement of systems. In recent times, interpretable deep learning (DL) represented by deep neuro-fuzzy systems (DNFS) combined with fuzzy inference has shown promising interpretability to further exploit the hidden value in the data. Motivated by this, we propose a DNFS-based VNE algorithm that aims to provide an interpretable NV scheme. Specifically, data-driven convolutional neural networks (CNNs) are used as fuzzy implication operators to compute the embedding probabilities of candidate substrate nodes through entailment operations. And, the identified fuzzy rule patterns are cached into the weights by forward computation and gradient back-propagation (BP). In addition, the fuzzy rule base is constructed based on Mamdani-type linguistic rules using linguistic labels. Finally, the effectiveness of evaluation indicators and fuzzy rules is verified by experiments.
Abstract:Vector graphics are widely used in digital art and valued by designers for their scalability and layer-wise topological properties. However, the creation and editing of vector graphics necessitate creativity and design expertise, leading to a time-consuming process. In this paper, we propose a novel pipeline that generates high-quality customized vector graphics based on textual prompts while preserving the properties and layer-wise information of a given exemplar SVG. Our method harnesses the capabilities of large pre-trained text-to-image models. By fine-tuning the cross-attention layers of the model, we generate customized raster images guided by textual prompts. To initialize the SVG, we introduce a semantic-based path alignment method that preserves and transforms crucial paths from the exemplar SVG. Additionally, we optimize path parameters using both image-level and vector-level losses, ensuring smooth shape deformation while aligning with the customized raster image. We extensively evaluate our method using multiple metrics from vector-level, image-level, and text-level perspectives. The evaluation results demonstrate the effectiveness of our pipeline in generating diverse customizations of vector graphics with exceptional quality. The project page is https://intchous.github.io/SVGCustomization.
Abstract:Virtual network embedding is one of the key problems of network virtualization. Since virtual network mapping is an NP-hard problem, a lot of research has focused on the evolutionary algorithm's masterpiece genetic algorithm. However, the parameter setting in the traditional method is too dependent on experience, and its low flexibility makes it unable to adapt to increasingly complex network environments. In addition, link-mapping strategies that do not consider load balancing can easily cause link blocking in high-traffic environments. In the IoT environment involving medical, disaster relief, life support and other equipment, network performance and stability are particularly important. Therefore, how to provide a more flexible virtual network mapping service in a heterogeneous network environment with large traffic is an urgent problem. Aiming at this problem, a virtual network mapping strategy based on hybrid genetic algorithm is proposed. This strategy uses a dynamically calculated cross-probability and pheromone-based mutation gene selection strategy to improve the flexibility of the algorithm. In addition, a weight update mechanism based on load balancing is introduced to reduce the probability of mapping failure while balancing the load. Simulation results show that the proposed method performs well in a number of performance metrics including mapping average quotation, link load balancing, mapping cost-benefit ratio, acceptance rate and running time.
Abstract:With the development of science and technology and the need for Multi-Criteria Decision-Making (MCDM), the optimization problem to be solved becomes extremely complex. The theoretically accurate and optimal solutions are often difficult to obtain. Therefore, meta-heuristic algorithms based on multi-point search have received extensive attention. Aiming at these problems, the design strategy of hybrid flower pollination algorithm for Virtual Network Embedding (VNE) problem is discussed. Combining the advantages of the Genetic Algorithm (GA) and FPA, the algorithm is optimized for the characteristics of discrete optimization problems. The cross operation is used to replace the cross-pollination operation to complete the global search and replace the mutation operation with self-pollination operation to enhance the ability of local search. Moreover, a life cycle mechanism is introduced as a complement to the traditional fitness-based selection strategy to avoid premature convergence. A chaotic optimization strategy is introduced to replace the random sequence-guided crossover process to strengthen the global search capability and reduce the probability of producing invalid individuals.
Abstract:With the advent of the Internet of things (IoT) era, more and more devices are connected to the IoT. Under the traditional cloud-thing centralized management mode, the transmission of massive data is facing many difficulties, and the reliability of data is difficult to be guaranteed. As emerging technologies, blockchain technology and edge computing (EC) technology have attracted the attention of academia in improving the reliability, privacy and invariability of IoT technology. In this paper, we combine the characteristics of the EC and blockchain to ensure the reliability of data transmission in the IoT. First of all, we propose a data transmission mechanism based on blockchain, which uses the distributed architecture of blockchain to ensure that the data is not tampered with; secondly, we introduce the three-tier structure in the architecture in turn; finally, we introduce the four working steps of the mechanism, which are similar to the working mechanism of blockchain. In the end, the simulation results show that the proposed scheme can ensure the reliability of data transmission in the Internet of things to a great extent.
Abstract:Natural language processing (NLP) task has achieved excellent performance in many fields, including semantic understanding, automatic summarization, image recognition and so on. However, most of the neural network models for NLP extract the text in a fine-grained way, which is not conducive to grasp the meaning of the text from a global perspective. To alleviate the problem, the combination of the traditional statistical method and deep learning model as well as a novel model based on multi model nonlinear fusion are proposed in this paper. The model uses the Jaccard coefficient based on part of speech, Term Frequency-Inverse Document Frequency (TF-IDF) and word2vec-CNN algorithm to measure the similarity of sentences respectively. According to the calculation accuracy of each model, the normalized weight coefficient is obtained and the calculation results are compared. The weighted vector is input into the fully connected neural network to give the final classification results. As a result, the statistical sentence similarity evaluation algorithm reduces the granularity of feature extraction, so it can grasp the sentence features globally. Experimental results show that the matching of sentence similarity calculation method based on multi model nonlinear fusion is 84%, and the F1 value of the model is 75%.
Abstract:Virtual network embedding (VNE) is an crucial part of network virtualization (NV), which aims to map the virtual networks (VNs) to a shared substrate network (SN). With the emergence of various delay-sensitive applications, how to improve the delay performance of the system has become a hot topic in academic circles. Based on extensive research, we proposed a multi-domain virtual network embedding algorithm based on delay prediction (DP-VNE). Firstly, the candidate physical nodes are selected by estimating the delay of virtual requests, then particle swarm optimization (PSO) algorithm is used to optimize the mapping process, so as to reduce the delay of the system. The simulation results show that compared with the other three advanced algorithms, the proposed algorithm can significantly reduce the system delay while keeping other indicators unaffected.
Abstract:The rapid development of virtual network architecture makes it possible for wireless network to be widely used. With the popularity of artificial intelligence (AI) industry in daily life, efficient resource allocation of wireless network has become a problem. Especially when network users request wireless network resources from different management domains, they still face many practical problems. From the perspective of virtual network embedding (VNE), this paper designs and implements a multi-objective optimization VNE algorithm for wireless network resource allocation. Resource allocation in virtual network is essentially a problem of allocating underlying resources for virtual network requests (VNRs). According to the proposed objective formula, we consider the optimization mapping cost, network delay and VNR acceptance rate. VNE is completed by node mapping and link mapping. In the experiment and simulation stage, it is compared with other VNE algorithms, the cross domain VNE algorithm proposed in this paper is optimal in the above three indicators. This shows the effectiveness of the algorithm in wireless network resource allocation.
Abstract:The continuous expanded scale of the industrial Internet of Things (IIoT) leads to IIoT equipments generating massive amounts of user data every moment. According to the different requirement of end users, these data usually have high heterogeneity and privacy, while most of users are reluctant to expose them to the public view. How to manage these time series data in an efficient and safe way in the field of IIoT is still an open issue, such that it has attracted extensive attention from academia and industry. As a new machine learning (ML) paradigm, federated learning (FL) has great advantages in training heterogeneous and private data. This paper studies the FL technology applications to manage IIoT equipment data in wireless network environments. In order to increase the model aggregation rate and reduce communication costs, we apply deep reinforcement learning (DRL) to IIoT equipment selection process, specifically to select those IIoT equipment nodes with accurate models. Therefore, we propose a FL algorithm assisted by DRL, which can take into account the privacy and efficiency of data training of IIoT equipment. By analyzing the data characteristics of IIoT equipments, we use MNIST, fashion MNIST and CIFAR-10 data sets to represent the data generated by IIoT. During the experiment, we employ the deep neural network (DNN) model to train the data, and experimental results show that the accuracy can reach more than 97\%, which corroborates the effectiveness of the proposed algorithm.