Abstract:With the advent of the Internet of things (IoT) era, more and more devices are connected to the IoT. Under the traditional cloud-thing centralized management mode, the transmission of massive data is facing many difficulties, and the reliability of data is difficult to be guaranteed. As emerging technologies, blockchain technology and edge computing (EC) technology have attracted the attention of academia in improving the reliability, privacy and invariability of IoT technology. In this paper, we combine the characteristics of the EC and blockchain to ensure the reliability of data transmission in the IoT. First of all, we propose a data transmission mechanism based on blockchain, which uses the distributed architecture of blockchain to ensure that the data is not tampered with; secondly, we introduce the three-tier structure in the architecture in turn; finally, we introduce the four working steps of the mechanism, which are similar to the working mechanism of blockchain. In the end, the simulation results show that the proposed scheme can ensure the reliability of data transmission in the Internet of things to a great extent.
Abstract:Virtual network embedding (VNE) is an crucial part of network virtualization (NV), which aims to map the virtual networks (VNs) to a shared substrate network (SN). With the emergence of various delay-sensitive applications, how to improve the delay performance of the system has become a hot topic in academic circles. Based on extensive research, we proposed a multi-domain virtual network embedding algorithm based on delay prediction (DP-VNE). Firstly, the candidate physical nodes are selected by estimating the delay of virtual requests, then particle swarm optimization (PSO) algorithm is used to optimize the mapping process, so as to reduce the delay of the system. The simulation results show that compared with the other three advanced algorithms, the proposed algorithm can significantly reduce the system delay while keeping other indicators unaffected.