Abstract:Self-supervised learning (SSL) has garnered significant attention in speech processing, excelling in linguistic tasks such as speech recognition. However, jointly improving the performance of pre-trained models on various downstream tasks, each requiring different speech information, poses significant challenges. To this purpose, we propose a progressive residual extraction based self-supervised learning method, named ProgRE. Specifically, we introduce two lightweight and specialized task modules into an encoder-style SSL backbone to enhance its ability to extract pitch variation and speaker information from speech. Furthermore, to prevent the interference of reinforced pitch variation and speaker information with irrelevant content information learning, we residually remove the information extracted by these two modules from the main branch. The main branch is then trained using HuBERT's speech masking prediction to ensure the performance of the Transformer's deep-layer features on content tasks. In this way, we can progressively extract pitch variation, speaker, and content representations from the input speech. Finally, we can combine multiple representations with diverse speech information using different layer weights to obtain task-specific representations for various downstream tasks. Experimental results indicate that our proposed method achieves joint performance improvements on various tasks, such as speaker identification, speech recognition, emotion recognition, speech enhancement, and voice conversion, compared to excellent SSL methods such as wav2vec2.0, HuBERT, and WavLM.
Abstract:Deep learning has brought significant improvements to the field of cross-modal representation learning. For tasks such as text-to-speech (TTS), voice conversion (VC), and automatic speech recognition (ASR), a cross-modal fine-grained (frame-level) sequence representation is desired, emphasizing the semantic content of the text modality while de-emphasizing the paralinguistic information of the speech modality. We propose a method called "Vector Quantized Contrastive Token-Acoustic Pre-training (VQ-CTAP)", which uses the cross-modal aligned sequence transcoder to bring text and speech into a joint multimodal space, learning how to connect text and speech at the frame level. The proposed VQ-CTAP is a paradigm for cross-modal sequence representation learning, offering a promising solution for fine-grained generation and recognition tasks in speech processing. The VQ-CTAP can be directly applied to VC and ASR tasks without fine-tuning or additional structures. We propose a sequence-aware semantic connector, which connects multiple frozen pre-trained modules for the TTS task, exhibiting a plug-and-play capability. We design a stepping optimization strategy to ensure effective model convergence by gradually injecting and adjusting the influence of various loss components. Furthermore, we propose a semantic-transfer-wise paralinguistic consistency loss to enhance representational capabilities, allowing the model to better generalize to unseen data and capture the nuances of paralinguistic information. In addition, VQ-CTAP achieves high-compression speech coding at a rate of 25Hz from 24kHz input waveforms, which is a 960-fold reduction in the sampling rate. The audio demo is available at https://qiangchunyu.github.io/VQCTAP/
Abstract:Self-supervised learning (SSL) representations from massively multilingual models offer a promising solution for low-resource language speech tasks. Despite advancements, language adaptation in TTS systems remains an open problem. This paper explores the language adaptation capability of ZMM-TTS, a recent SSL-based multilingual TTS system proposed in our previous work. We conducted experiments on 12 languages using limited data with various fine-tuning configurations. We demonstrate that the similarity in phonetics between the pre-training and target languages, as well as the language category, affects the target language's adaptation performance. Additionally, we find that the fine-tuning dataset size and number of speakers influence adaptability. Surprisingly, we also observed that using paired data for fine-tuning is not always optimal compared to audio-only data. Beyond speech intelligibility, our analysis covers speaker similarity, language identification, and predicted MOS.
Abstract:Supervised speech enhancement has gained significantly from recent advancements in neural networks, especially due to their ability to non-linearly fit the diverse representations of target speech, such as waveform or spectrum. However, these direct-fitting solutions continue to face challenges with degraded speech and residual noise in hearing evaluations. By bridging the speech enhancement and the Information Bottleneck principle in this letter, we rethink a universal plug-and-play strategy and propose a Refining Underlying Information framework called RUI to rise to the challenges both in theory and practice. Specifically, we first transform the objective of speech enhancement into an incremental convergence problem of mutual information between comprehensive speech characteristics and individual speech characteristics, e.g., spectral and acoustic characteristics. By doing so, compared with the existing direct-fitting solutions, the underlying information stems from the conditional entropy of acoustic characteristic given spectral characteristics. Therefore, we design a dual-path multiple refinement iterator based on the chain rule of entropy to refine this underlying information for further approximating target speech. Experimental results on DNS-Challenge dataset show that our solution consistently improves 0.3+ PESQ score over baselines, with only additional 1.18 M parameters. The source code is available at https://github.com/caoruitju/RUI_SE.
Abstract:Neural text-to-speech (TTS) has achieved human-like synthetic speech for single-speaker, single-language synthesis. Multilingual TTS systems are limited to resource-rich languages due to the lack of large paired text and studio-quality audio data. In most cases, TTS systems are built using a single speaker's voice. However, there is growing interest in developing systems that can synthesize voices for new speakers using only a few seconds of their speech. This paper presents ZMM-TTS, a multilingual and multispeaker framework utilizing quantized latent speech representations from a large-scale, pre-trained, self-supervised model. Our paper is the first to incorporate the representations from text-based and speech-based self-supervised learning models into multilingual speech synthesis tasks. We conducted comprehensive subjective and objective evaluations through a series of experiments. Our model has been proven effective in terms of speech naturalness and similarity for both seen and unseen speakers in six high-resource languages. We also tested the efficiency of our method on two hypothetical low-resource languages. The results are promising, indicating that our proposed approach can synthesize audio that is intelligible and has a high degree of similarity to the target speaker's voice, even without any training data for the new, unseen language.
Abstract:In this paper, we study the mistake bound of online kernel learning on a budget. We propose a new budgeted online kernel learning model, called Ahpatron, which significantly improves the mistake bound of previous work and resolves the open problem posed by Dekel, Shalev-Shwartz, and Singer (2005). We first present an aggressive variant of Perceptron, named AVP, a model without budget, which uses an active updating rule. Then we design a new budget maintenance mechanism, which removes a half of examples,and projects the removed examples onto a hypothesis space spanned by the remaining examples. Ahpatron adopts the above mechanism to approximate AVP. Theoretical analyses prove that Ahpatron has tighter mistake bounds, and experimental results show that Ahpatron outperforms the state-of-the-art algorithms on the same or a smaller budget.
Abstract:Text-to-speech (TTS) methods have shown promising results in voice cloning, but they require a large number of labeled text-speech pairs. Minimally-supervised speech synthesis decouples TTS by combining two types of discrete speech representations(semantic \& acoustic) and using two sequence-to-sequence tasks to enable training with minimal supervision. However, existing methods suffer from information redundancy and dimension explosion in semantic representation, and high-frequency waveform distortion in discrete acoustic representation. Autoregressive frameworks exhibit typical instability and uncontrollability issues. And non-autoregressive frameworks suffer from prosodic averaging caused by duration prediction models. To address these issues, we propose a minimally-supervised high-fidelity speech synthesis method, where all modules are constructed based on the diffusion models. The non-autoregressive framework enhances controllability, and the duration diffusion model enables diversified prosodic expression. Contrastive Token-Acoustic Pretraining (CTAP) is used as an intermediate semantic representation to solve the problems of information redundancy and dimension explosion in existing semantic coding methods. Mel-spectrogram is used as the acoustic representation. Both semantic and acoustic representations are predicted by continuous variable regression tasks to solve the problem of high-frequency fine-grained waveform distortion. Experimental results show that our proposed method outperforms the baseline method. We provide audio samples on our website.
Abstract:For fine-grained generation and recognition tasks such as minimally-supervised text-to-speech (TTS), voice conversion (VC), and automatic speech recognition (ASR), the intermediate representations extracted from speech should serve as a "bridge" between text and acoustic information, containing information from both modalities. The semantic content is emphasized, while the paralinguistic information such as speaker identity and acoustic details should be de-emphasized. However, existing methods for extracting fine-grained intermediate representations from speech suffer from issues of excessive redundancy and dimension explosion. Contrastive learning is a good method for modeling intermediate representations from two modalities. However, existing contrastive learning methods in the audio field focus on extracting global descriptive information for downstream audio classification tasks, making them unsuitable for TTS, VC, and ASR tasks. To address these issues, we propose a method named "Contrastive Token-Acoustic Pretraining (CTAP)", which uses two encoders to bring phoneme and speech into a joint multimodal space, learning how to connect phoneme and speech at the frame level. The CTAP model is trained on 210k speech and phoneme text pairs, achieving minimally-supervised TTS, VC, and ASR. The proposed CTAP method offers a promising solution for fine-grained generation and recognition downstream tasks in speech processing.
Abstract:Recently, there has been a growing interest in text-to-speech (TTS) methods that can be trained with minimal supervision by combining two types of discrete speech representations and using two sequence-to-sequence tasks to decouple TTS. To address the challenges associated with high dimensionality and waveform distortion in discrete representations, we propose Diff-LM-Speech, which models semantic embeddings into mel-spectrogram based on diffusion models and introduces a prompt encoder structure based on variational autoencoders and prosody bottlenecks to improve prompt representation capabilities. Autoregressive language models often suffer from missing and repeated words, while non-autoregressive frameworks face expression averaging problems due to duration prediction models. To address these issues, we propose Tetra-Diff-Speech, which designs a duration diffusion model to achieve diverse prosodic expressions. While we expect the information content of semantic coding to be between that of text and acoustic coding, existing models extract semantic coding with a lot of redundant information and dimensionality explosion. To verify that semantic coding is not necessary, we propose Tri-Diff-Speech. Experimental results show that our proposed methods outperform baseline methods. We provide a website with audio samples.
Abstract:The Audio-Visual Speaker Extraction (AVSE) algorithm employs parallel video recording to leverage two visual cues, namely speaker identity and synchronization, to enhance performance compared to audio-only algorithms. However, the visual front-end in AVSE is often derived from a pre-trained model or end-to-end trained, making it unclear which visual cue contributes more to the speaker extraction performance. This raises the question of how to better utilize visual cues. To address this issue, we propose two training strategies that decouple the learning of the two visual cues. Our experimental results demonstrate that both visual cues are useful, with the synchronization cue having a higher impact. We introduce a more explainable model, the Decoupled Audio-Visual Speaker Extraction (DAVSE) model, which leverages both visual cues.