Abstract:Generative adversarial networks (GANs) have been indicated their superiority in usage of the real-time speech synthesis. Nevertheless, most of them make use of deep convolutional layers as their backbone, which may cause the absence of previous signal information. However, the generation of speech signals invariably require preceding waveform samples in its reconstruction, as the lack of this can lead to artifacts in generated speech. To address this conflict, in this paper, we propose an improved model: a post auto-regressive (AR) GAN vocoder with a self-attention layer, which merging self-attention in an AR loop. It will not participate in inference, but can assist the generator to learn temporal dependencies within frames in training. Furthermore, an ablation study was done to confirm the contribution of each part. Systematic experiments show that our model leads to a consistent improvement on both objective and subjective evaluation performance.
Abstract:Recent advancements in end-to-end speech synthesis have made it possible to generate highly natural speech. However, training these models typically requires a large amount of high-fidelity speech data, and for unseen texts, the prosody of synthesized speech is relatively unnatural. To address these issues, we propose to combine a fine-tuned BERT-based front-end with a pre-trained FastSpeech2-based acoustic model to improve prosody modeling. The pre-trained BERT is fine-tuned on the polyphone disambiguation task, the joint Chinese word segmentation (CWS) and part-of-speech (POS) tagging task, and the prosody structure prediction (PSP) task in a multi-task learning framework. FastSpeech 2 is pre-trained on large-scale external data that are noisy but easier to obtain. Experimental results show that both the fine-tuned BERT model and the pre-trained FastSpeech 2 can improve prosody, especially for those structurally complex sentences.