CSTR
Abstract:Emotion recognition from speech and music shares similarities due to their acoustic overlap, which has led to interest in transferring knowledge between these domains. However, the shared acoustic cues between speech and music, particularly those encoded by Self-Supervised Learning (SSL) models, remain largely unexplored, given the fact that SSL models for speech and music have rarely been applied in cross-domain research. In this work, we revisit the acoustic similarity between emotion speech and music, starting with an analysis of the layerwise behavior of SSL models for Speech Emotion Recognition (SER) and Music Emotion Recognition (MER). Furthermore, we perform cross-domain adaptation by comparing several approaches in a two-stage fine-tuning process, examining effective ways to utilize music for SER and speech for MER. Lastly, we explore the acoustic similarities between emotional speech and music using Frechet audio distance for individual emotions, uncovering the issue of emotion bias in both speech and music SSL models. Our findings reveal that while speech and music SSL models do capture shared acoustic features, their behaviors can vary depending on different emotions due to their training strategies and domain-specificities. Additionally, parameter-efficient fine-tuning can enhance SER and MER performance by leveraging knowledge from each other. This study provides new insights into the acoustic similarity between emotional speech and music, and highlights the potential for cross-domain generalization to improve SER and MER systems.
Abstract:Utilizing Self-Supervised Learning (SSL) models for Speech Emotion Recognition (SER) has proven effective, yet limited research has explored cross-lingual scenarios. This study presents a comparative analysis between human performance and SSL models, beginning with a layer-wise analysis and an exploration of parameter-efficient fine-tuning strategies in monolingual, cross-lingual, and transfer learning contexts. We further compare the SER ability of models and humans at both utterance- and segment-levels. Additionally, we investigate the impact of dialect on cross-lingual SER through human evaluation. Our findings reveal that models, with appropriate knowledge transfer, can adapt to the target language and achieve performance comparable to native speakers. We also demonstrate the significant effect of dialect on SER for individuals without prior linguistic and paralinguistic background. Moreover, both humans and models exhibit distinct behaviors across different emotions. These results offer new insights into the cross-lingual SER capabilities of SSL models, underscoring both their similarities to and differences from human emotion perception.
Abstract:Recent work has shown the feasibility and benefit of bootstrapping an integrated sequence-to-sequence (Seq2Seq) linguistic frontend from a traditional pipeline-based frontend for text-to-speech (TTS). To overcome the fixed lexical coverage of bootstrapping training data, previous work has proposed to leverage easily accessible transcribed speech audio as an additional training source for acquiring novel pronunciation knowledge for uncovered words, which relies on an auxiliary ASR model as part of a cumbersome implementation flow. In this work, we propose an alternative method to leverage transcribed speech audio as an additional training source, based on multi-task learning (MTL). Experiments show that, compared to a baseline Seq2Seq frontend, the proposed MTL-based method reduces PER from 2.5% to 1.6% for those word types covered exclusively in transcribed speech audio, achieving a similar performance to the previous method but with a much simpler implementation flow.
Abstract:While recent Zero-Shot Text-to-Speech (ZS-TTS) models have achieved high naturalness and speaker similarity, they fall short in accent fidelity and control. To address this issue, we propose zero-shot accent generation that unifies Foreign Accent Conversion (FAC), accented TTS, and ZS-TTS, with a novel two-stage pipeline. In the first stage, we achieve state-of-the-art (SOTA) on Accent Identification (AID) with 0.56 f1 score on unseen speakers. In the second stage, we condition ZS-TTS system on the pretrained speaker-agnostic accent embeddings extracted by the AID model. The proposed system achieves higher accent fidelity on inherent/cross accent generation, and enables unseen accent generation.
Abstract:Self-supervised learning (SSL) representations from massively multilingual models offer a promising solution for low-resource language speech tasks. Despite advancements, language adaptation in TTS systems remains an open problem. This paper explores the language adaptation capability of ZMM-TTS, a recent SSL-based multilingual TTS system proposed in our previous work. We conducted experiments on 12 languages using limited data with various fine-tuning configurations. We demonstrate that the similarity in phonetics between the pre-training and target languages, as well as the language category, affects the target language's adaptation performance. Additionally, we find that the fine-tuning dataset size and number of speakers influence adaptability. Surprisingly, we also observed that using paired data for fine-tuning is not always optimal compared to audio-only data. Beyond speech intelligibility, our analysis covers speaker similarity, language identification, and predicted MOS.
Abstract:Neural text-to-speech (TTS) has achieved human-like synthetic speech for single-speaker, single-language synthesis. Multilingual TTS systems are limited to resource-rich languages due to the lack of large paired text and studio-quality audio data. In most cases, TTS systems are built using a single speaker's voice. However, there is growing interest in developing systems that can synthesize voices for new speakers using only a few seconds of their speech. This paper presents ZMM-TTS, a multilingual and multispeaker framework utilizing quantized latent speech representations from a large-scale, pre-trained, self-supervised model. Our paper is the first to incorporate the representations from text-based and speech-based self-supervised learning models into multilingual speech synthesis tasks. We conducted comprehensive subjective and objective evaluations through a series of experiments. Our model has been proven effective in terms of speech naturalness and similarity for both seen and unseen speakers in six high-resource languages. We also tested the efficiency of our method on two hypothetical low-resource languages. The results are promising, indicating that our proposed approach can synthesize audio that is intelligible and has a high degree of similarity to the target speaker's voice, even without any training data for the new, unseen language.
Abstract:Automatically predicting the outcome of subjective listening tests is a challenging task. Ratings may vary from person to person even if preferences are consistent across listeners. While previous work has focused on predicting listeners' ratings (mean opinion scores) of individual stimuli, we focus on the simpler task of predicting subjective preference given two speech stimuli for the same text. We propose a model based on anti-symmetric twin neural networks, trained on pairs of waveforms and their corresponding preference scores. We explore both attention and recurrent neural nets to account for the fact that stimuli in a pair are not time aligned. To obtain a large training set we convert listeners' ratings from MUSHRA tests to values that reflect how often one stimulus in the pair was rated higher than the other. Specifically, we evaluate performance on data obtained from twelve MUSHRA evaluations conducted over five years, containing different TTS systems, built from data of different speakers. Our results compare favourably to a state-of-the-art model trained to predict MOS scores.
Abstract:Ultrasound tongue imaging is used to visualise the intra-oral articulators during speech production. It is utilised in a range of applications, including speech and language therapy and phonetics research. Ultrasound and speech audio are recorded simultaneously, and in order to correctly use this data, the two modalities should be correctly synchronised. Synchronisation is achieved using specialised hardware at recording time, but this approach can fail in practice resulting in data of limited usability. In this paper, we address the problem of automatically synchronising ultrasound and audio after data collection. We first investigate the tolerance of expert ultrasound users to synchronisation errors in order to find the thresholds for error detection. We use these thresholds to define accuracy scoring boundaries for evaluating our system. We then describe our approach for automatic synchronisation, which is driven by a self-supervised neural network, exploiting the correlation between the two signals to synchronise them. We train our model on data from multiple domains with different speaker characteristics, different equipment, and different recording environments, and achieve an accuracy >92.4% on held-out in-domain data. Finally, we introduce a novel resource, the Cleft dataset, which we gathered with a new clinical subgroup and for which hardware synchronisation proved unreliable. We apply our model to this out-of-domain data, and evaluate its performance subjectively with expert users. Results show that users prefer our model's output over the original hardware output 79.3% of the time. Our results demonstrate the strength of our approach and its ability to generalise to data from new domains.
Abstract:We investigate multi-speaker speech recognition from ultrasound images of the tongue and video images of the lips. We train our systems on imaging data from modal speech, and evaluate on matched test sets of two speaking modes: silent and modal speech. We observe that silent speech recognition from imaging data underperforms compared to modal speech recognition, likely due to a speaking-mode mismatch between training and testing. We improve silent speech recognition performance using techniques that address the domain mismatch, such as fMLLR and unsupervised model adaptation. We also analyse the properties of silent and modal speech in terms of utterance duration and the size of the articulatory space. To estimate the articulatory space, we compute the convex hull of tongue splines, extracted from ultrasound tongue images. Overall, we observe that the duration of silent speech is longer than that of modal speech, and that silent speech covers a smaller articulatory space than modal speech. Although these two properties are statistically significant across speaking modes, they do not directly correlate with word error rates from speech recognition.
Abstract:Speech sound disorders are a common communication impairment in childhood. Because speech disorders can negatively affect the lives and the development of children, clinical intervention is often recommended. To help with diagnosis and treatment, clinicians use instrumented methods such as spectrograms or ultrasound tongue imaging to analyse speech articulations. Analysis with these methods can be laborious for clinicians, therefore there is growing interest in its automation. In this paper, we investigate the contribution of ultrasound tongue imaging for the automatic detection of speech articulation errors. Our systems are trained on typically developing child speech and augmented with a database of adult speech using audio and ultrasound. Evaluation on typically developing speech indicates that pre-training on adult speech and jointly using ultrasound and audio gives the best results with an accuracy of 86.9%. To evaluate on disordered speech, we collect pronunciation scores from experienced speech and language therapists, focusing on cases of velar fronting and gliding of /r/. The scores show good inter-annotator agreement for velar fronting, but not for gliding errors. For automatic velar fronting error detection, the best results are obtained when jointly using ultrasound and audio. The best system correctly detects 86.6% of the errors identified by experienced clinicians. Out of all the segments identified as errors by the best system, 73.2% match errors identified by clinicians. Results on automatic gliding detection are harder to interpret due to poor inter-annotator agreement, but appear promising. Overall findings suggest that automatic detection of speech articulation errors has potential to be integrated into ultrasound intervention software for automatically quantifying progress during speech therapy.