Abstract:While specialized detectors for AI-Generated Images (AIGI) achieve near-perfect accuracy on curated benchmarks, they suffer from a dramatic performance collapse in realistic, in-the-wild scenarios. In this work, we demonstrate that simplicity prevails over complex architectural designs. A simple linear classifier trained on the frozen features of modern Vision Foundation Models , including Perception Encoder, MetaCLIP 2, and DINOv3, establishes a new state-of-the-art. Through a comprehensive evaluation spanning traditional benchmarks, unseen generators, and challenging in-the-wild distributions, we show that this baseline not only matches specialized detectors on standard benchmarks but also decisively outperforms them on in-the-wild datasets, boosting accuracy by striking margins of over 30\%. We posit that this superior capability is an emergent property driven by the massive scale of pre-training data containing synthetic content. We trace the source of this capability to two distinct manifestations of data exposure: Vision-Language Models internalize an explicit semantic concept of forgery, while Self-Supervised Learning models implicitly acquire discriminative forensic features from the pretraining data. However, we also reveal persistent limitations: these models suffer from performance degradation under recapture and transmission, remain blind to VAE reconstruction and localized editing. We conclude by advocating for a paradigm shift in AI forensics, moving from overfitting on static benchmarks to harnessing the evolving world knowledge of foundation models for real-world reliability.
Abstract:With the rapid advancement of video generation models such as Veo and Wan, the visual quality of synthetic content has reached a level where macro-level semantic errors and temporal inconsistencies are no longer prominent. However, this does not imply that the distinction between real and cutting-edge high-fidelity fake is untraceable. We argue that AI-generated videos are essentially products of a manifold-fitting process rather than a physical recording. Consequently, the pixel composition logic of consecutive adjacent frames residual in AI videos exhibits a structured and homogenous characteristic. We term this phenomenon `Manifold Projection Fluctuations' (MPF). Driven by this insight, we propose a hierarchical dual-path framework that operates as a sequential filtering process. The first, the Static Manifold Deviation Branch, leverages the refined perceptual boundaries of Large-Scale Vision Foundation Models (VFMs) to capture residual spatial anomalies or physical violations that deviate from the natural real-world manifold (off-manifold). For the remaining high-fidelity videos that successfully reside on-manifold and evade spatial detection, we introduce the Micro-Temporal Fluctuation Branch as a secondary, fine-grained filter. By analyzing the structured MPF that persists even in visually perfect sequences, our framework ensures that forgeries are exposed regardless of whether they manifest as global real-world manifold deviations or subtle computational fingerprints.
Abstract:Generative models now produce imperceptible, fine-grained manipulated faces, posing significant privacy risks. However, existing AI-generated face datasets generally lack focus on samples with fine-grained regional manipulations. Furthermore, no researchers have yet studied the real impact of splice attacks, which occur between real and manipulated samples, on detectors. We refer to these as detector-evasive samples. Based on this, we introduce the DiffFace-Edit dataset, which has the following advantages: 1) It contains over two million AI-generated fake images. 2) It features edits across eight facial regions (e.g., eyes, nose) and includes a richer variety of editing combinations, such as single-region and multi-region edits. Additionally, we specifically analyze the impact of detector-evasive samples on detection models. We conduct a comprehensive analysis of the dataset and propose a cross-domain evaluation that combines IMDL methods. Dataset will be available at https://github.com/ywh1093/DiffFace-Edit.




Abstract:Catalyst design is crucial for materials synthesis, especially for complex reaction networks. Strategies like collaborative catalytic systems and multifunctional catalysts are effective but face challenges at the nanoscale. Carbon nanotube synthesis contains complicated nanoscale catalytic reactions, thus achieving high-density, high-quality semiconducting CNTs demands innovative catalyst design. In this work, we present a holistic framework integrating machine learning into traditional catalyst design for semiconducting CNT synthesis. It combines knowledge-based insights with data-driven techniques. Three key components, including open-access electronic structure databases for precise physicochemical descriptors, pre-trained natural language processing-based embedding model for higher-level abstractions, and physical - driven predictive models based on experiment data, are utilized. Through this framework, a new method for selective semiconducting CNT synthesis via catalyst - mediated electron injection, tuned by light during growth, is proposed. 54 candidate catalysts are screened, and three with high potential are identified. High-throughput experiments validate the predictions, with semiconducting selectivity exceeding 91% and the FeTiO3 catalyst reaching 98.6%. This approach not only addresses semiconducting CNT synthesis but also offers a generalizable methodology for global catalyst design and nanomaterials synthesis, advancing materials science in precise control.




Abstract:Fairness is a core element in the trustworthy deployment of deepfake detection models, especially in the field of digital identity security. Biases in detection models toward different demographic groups, such as gender and race, may lead to systemic misjudgments, exacerbating the digital divide and social inequities. However, current fairness-enhanced detectors often improve fairness at the cost of detection accuracy. To address this challenge, we propose a dual-mechanism collaborative optimization framework. Our proposed method innovatively integrates structural fairness decoupling and global distribution alignment: decoupling channels sensitive to demographic groups at the model architectural level, and subsequently reducing the distance between the overall sample distribution and the distributions corresponding to each demographic group at the feature level. Experimental results demonstrate that, compared with other methods, our framework improves both inter-group and intra-group fairness while maintaining overall detection accuracy across domains.
Abstract:Skeleton-based action recognition faces two longstanding challenges: the scarcity of labeled training samples and difficulty modeling short- and long-range temporal dependencies. To address these issues, we propose a unified framework, LSTC-MDA, which simultaneously improves temporal modeling and data diversity. We introduce a novel Long-Short Term Temporal Convolution (LSTC) module with parallel short- and long-term branches, these two feature branches are then aligned and fused adaptively using learned similarity weights to preserve critical long-range cues lost by conventional stride-2 temporal convolutions. We also extend Joint Mixing Data Augmentation (JMDA) with an Additive Mixup at the input level, diversifying training samples and restricting mixup operations to the same camera view to avoid distribution shifts. Ablation studies confirm each component contributes. LSTC-MDA achieves state-of-the-art results: 94.1% and 97.5% on NTU 60 (X-Sub and X-View), 90.4% and 92.0% on NTU 120 (X-Sub and X-Set),97.2% on NW-UCLA. Code: https://github.com/xiaobaoxia/LSTC-MDA.




Abstract:While specialized detectors for AI-generated images excel on curated benchmarks, they fail catastrophically in real-world scenarios, as evidenced by their critically high false-negative rates on `in-the-wild' benchmarks. Instead of crafting another specialized `knife' for this problem, we bring a `gun' to the fight: a simple linear classifier on a modern Vision Foundation Model (VFM). Trained on identical data, this baseline decisively `outguns' bespoke detectors, boosting in-the-wild accuracy by a striking margin of over 20\%. Our analysis pinpoints the source of the VFM's `firepower': First, by probing text-image similarities, we find that recent VLMs (e.g., Perception Encoder, Meta CLIP2) have learned to align synthetic images with forgery-related concepts (e.g., `AI-generated'), unlike previous versions. Second, we speculate that this is due to data exposure, as both this alignment and overall accuracy plummet on a novel dataset scraped after the VFM's pre-training cut-off date, ensuring it was unseen during pre-training. Our findings yield two critical conclusions: 1) For the real-world `gunfight' of AI-generated image detection, the raw `firepower' of an updated VFM is far more effective than the `craftsmanship' of a static detector. 2) True generalization evaluation requires test data to be independent of the model's entire training history, including pre-training.
Abstract:Outdated facts in temporal knowledge graphs (TKGs) result from exceeding the expiration date of facts, which negatively impact reasoning performance on TKGs. However, existing reasoning methods primarily focus on positive importance of historical facts, neglecting adverse effects of outdated facts. Besides, training on these outdated facts yields extra computational cost. To address these challenges, we propose an outdated fact filtering framework named HALO, which quantifies the temporal validity of historical facts by exploring the half-life theory to filter outdated facts in TKGs. HALO consists of three modules: the temporal fact attention module, the dynamic relation-aware encoder module, and the outdated fact filtering module. Firstly, the temporal fact attention module captures the evolution of historical facts over time to identify relevant facts. Secondly, the dynamic relation-aware encoder module is designed for efficiently predicting the half life of each fact. Finally, we construct a time decay function based on the half-life theory to quantify the temporal validity of facts and filter outdated facts. Experimental results show that HALO outperforms the state-of-the-art TKG reasoning methods on three public datasets, demonstrating its effectiveness in detecting and filtering outdated facts (Codes are available at https://github.com/yushuowiki/K-Half/tree/main ).




Abstract:Image generation algorithms are increasingly integral to diverse aspects of human society, driven by their practical applications. However, insufficient oversight in artificial Intelligence generated content (AIGC) can facilitate the spread of malicious content and increase the risk of copyright infringement. Among the diverse range of image generation models, the Latent Diffusion Model (LDM) is currently the most widely used, dominating the majority of the Text-to-Image model market. Currently, most attribution methods for LDMs rely on directly embedding watermarks into the generated images or their intermediate noise, a practice that compromises both the quality and the robustness of the generated content. To address these limitations, we introduce TraceMark-LDM, an novel algorithm that integrates watermarking to attribute generated images while guaranteeing non-destructive performance. Unlike current methods, TraceMark-LDM leverages watermarks as guidance to rearrange random variables sampled from a Gaussian distribution. To mitigate potential deviations caused by inversion errors, the small absolute elements are grouped and rearranged. Additionally, we fine-tune the LDM encoder to enhance the robustness of the watermark. Experimental results show that images synthesized using TraceMark-LDM exhibit superior quality and attribution accuracy compared to state-of-the-art (SOTA) techniques. Notably, TraceMark-LDM demonstrates exceptional robustness against various common attack methods, consistently outperforming SOTA methods.




Abstract:Faces synthesized by diffusion models (DMs) with high-quality and controllable attributes pose a significant challenge for Deepfake detection. Most state-of-the-art detectors only yield a binary decision, incapable of forgery localization, attribution of forgery methods, and providing analysis on the cause of forgeries. In this work, we integrate Multimodal Large Language Models (MLLMs) within DM-based face forensics, and propose a fine-grained analysis triad framework called VLForgery, that can 1) predict falsified facial images; 2) locate the falsified face regions subjected to partial synthesis; and 3) attribute the synthesis with specific generators. To achieve the above goals, we introduce VLF (Visual Language Forensics), a novel and diverse synthesis face dataset designed to facilitate rich interactions between Visual and Language modalities in MLLMs. Additionally, we propose an extrinsic knowledge-guided description method, termed EkCot, which leverages knowledge from the image generation pipeline to enable MLLMs to quickly capture image content. Furthermore, we introduce a low-level vision comparison pipeline designed to identify differential features between real and fake that MLLMs can inherently understand. These features are then incorporated into EkCot, enhancing its ability to analyze forgeries in a structured manner, following the sequence of detection, localization, and attribution. Extensive experiments demonstrate that VLForgery outperforms other state-of-the-art forensic approaches in detection accuracy, with additional potential for falsified region localization and attribution analysis.