Abstract:The high-quality, realistic images generated by generative models pose significant challenges for exposing them.So far, data-driven deep neural networks have been justified as the most efficient forensics tools for the challenges. However, they may be over-fitted to certain semantics, resulting in considerable inconsistency in detection performance across different contents of generated samples. It could be regarded as an issue of detection fairness. In this paper, we propose a novel framework named Fairadapter to tackle the issue. In comparison with existing state-of-the-art methods, our model achieves improved fairness performance. Our project: https://github.com/AppleDogDog/FairnessDetection
Abstract:In this paper, we propose a novel method for detecting DeepFakes, enhancing the generalization of detection through semantic decoupling. There are now multiple DeepFake forgery technologies that not only possess unique forgery semantics but may also share common forgery semantics. The unique forgery semantics and irrelevant content semantics may promote over-fitting and hamper generalization for DeepFake detectors. For our proposed method, after decoupling, the common forgery semantics could be extracted from DeepFakes, and subsequently be employed for developing the generalizability of DeepFake detectors. Also, to pursue additional generalizability, we designed an adaptive high-pass module and a two-stage training strategy to improve the independence of decoupled semantics. Evaluation on FF++, Celeb-DF, DFD, and DFDC datasets showcases our method's excellent detection and generalization performance. Code is available at: https://anonymous.4open.science/r/DFS-GDD-0F42.
Abstract:Prior DeepFake detection methods have faced a core challenge in preserving generalizability and fairness effectively. In this paper, we proposed an approach akin to decoupling and sublimating forgery semantics, named astray-learning. The primary objective of the proposed method is to blend hybrid forgery semantics derived from high-frequency components into authentic imagery, named aberrations. The ambiguity of aberrations is beneficial to reducing the model's bias towards specific semantics. Consequently, it can enhance the model's generalization ability and maintain the detection fairness. All codes for astray-learning are publicly available at https://anonymous.4open.science/r/astray-learning-C49B .
Abstract:Although effective deepfake detection models have been developed in recent years, recent studies have revealed that these models can result in unfair performance disparities among demographic groups, such as race and gender. This can lead to particular groups facing unfair targeting or exclusion from detection, potentially allowing misclassified deepfakes to manipulate public opinion and undermine trust in the model. The existing method for addressing this problem is providing a fair loss function. It shows good fairness performance for intra-domain evaluation but does not maintain fairness for cross-domain testing. This highlights the significance of fairness generalization in the fight against deepfakes. In this work, we propose the first method to address the fairness generalization problem in deepfake detection by simultaneously considering features, loss, and optimization aspects. Our method employs disentanglement learning to extract demographic and domain-agnostic forgery features, fusing them to encourage fair learning across a flattened loss landscape. Extensive experiments on prominent deepfake datasets demonstrate our method's effectiveness, surpassing state-of-the-art approaches in preserving fairness during cross-domain deepfake detection. The code is available at https://github.com/Purdue-M2/Fairness-Generalization