Abstract:Exploring the intricate dynamics between muscular and skeletal structures is pivotal for understanding human motion. This domain presents substantial challenges, primarily attributed to the intensive resources required for acquiring ground truth muscle activation data, resulting in a scarcity of datasets. In this work, we address this issue by establishing Muscles in Time (MinT), a large-scale synthetic muscle activation dataset. For the creation of MinT, we enriched existing motion capture datasets by incorporating muscle activation simulations derived from biomechanical human body models using the OpenSim platform, a common approach in biomechanics and human motion research. Starting from simple pose sequences, our pipeline enables us to extract detailed information about the timing of muscle activations within the human musculoskeletal system. Muscles in Time contains over nine hours of simulation data covering 227 subjects and 402 simulated muscle strands. We demonstrate the utility of this dataset by presenting results on neural network-based muscle activation estimation from human pose sequences with two different sequence-to-sequence architectures. Data and code are provided under https://simplexsigil.github.io/mint.
Abstract:Privacy-preserving computer vision is an important emerging problem in machine learning and artificial intelligence. The prevalent methods tackling this problem use differential privacy or anonymization and obfuscation techniques to protect the privacy of individuals. In both cases, the utility of the trained model is sacrificed heavily in this process. In this work, we propose an effective approach called masked differential privacy (MaskDP), which allows for controlling sensitive regions where differential privacy is applied, in contrast to applying DP on the entire input. Our method operates selectively on the data and allows for defining non-sensitive spatio-temporal regions without DP application or combining differential privacy with other privacy techniques within data samples. Experiments on four challenging action recognition datasets demonstrate that our proposed techniques result in better utility-privacy trade-offs compared to standard differentially private training in the especially demanding $\epsilon<1$ regime.
Abstract:In real-world scenarios, human actions often fall outside the distribution of training data, making it crucial for models to recognize known actions and reject unknown ones. However, using pure skeleton data in such open-set conditions poses challenges due to the lack of visual background cues and the distinct sparse structure of body pose sequences. In this paper, we tackle the unexplored Open-Set Skeleton-based Action Recognition (OS-SAR) task and formalize the benchmark on three skeleton-based datasets. We assess the performance of seven established open-set approaches on our task and identify their limits and critical generalization issues when dealing with skeleton information. To address these challenges, we propose a distance-based cross-modality ensemble method that leverages the cross-modal alignment of skeleton joints, bones, and velocities to achieve superior open-set recognition performance. We refer to the key idea as CrossMax - an approach that utilizes a novel cross-modality mean max discrepancy suppression mechanism to align latent spaces during training and a cross-modality distance-based logits refinement method during testing. CrossMax outperforms existing approaches and consistently yields state-of-the-art results across all datasets and backbones. The benchmark, code, and models will be released at https://github.com/KPeng9510/OS-SAR.
Abstract:To integrate action recognition methods into autonomous robotic systems, it is crucial to consider adverse situations involving target occlusions. Such a scenario, despite its practical relevance, is rarely addressed in existing self-supervised skeleton-based action recognition methods. To empower robots with the capacity to address occlusion, we propose a simple and effective method. We first pre-train using occluded skeleton sequences, then use k-means clustering (KMeans) on sequence embeddings to group semantically similar samples. Next, we employ K-nearest-neighbor (KNN) to fill in missing skeleton data based on the closest sample neighbors. Imputing incomplete skeleton sequences to create relatively complete sequences as input provides significant benefits to existing skeleton-based self-supervised models. Meanwhile, building on the state-of-the-art Partial Spatio-Temporal Learning (PSTL), we introduce an Occluded Partial Spatio-Temporal Learning (OPSTL) framework. This enhancement utilizes Adaptive Spatial Masking (ASM) for better use of high-quality, intact skeletons. The effectiveness of our imputation methods is verified on the challenging occluded versions of the NTURGB+D 60 and NTURGB+D 120. The source code will be made publicly available at https://github.com/cyfml/OPSTL.
Abstract:Domain adaptation is essential for activity recognition, as common spatiotemporal architectures risk overfitting due to increased parameters arising from the temporal dimension. Unsupervised domain adaptation methods have been extensively studied, yet, they require large-scale unlabeled data from the target domain. In this work, we address few-shot domain adaptation for video-based activity recognition (FSDA-AR), which leverages a very small amount of labeled target videos to achieve effective adaptation. This setting is attractive and promising for applications, as it requires recording and labeling only a few, or even a single example per class in the target domain, which often includes activities that are rare yet crucial to recognize. We construct FSDA-AR benchmarks using five established datasets: UCF101, HMDB51, EPIC-KITCHEN, Sims4Action, and Toyota Smart Home. Our results demonstrate that FSDA-AR performs comparably to unsupervised domain adaptation with significantly fewer (yet labeled) target examples. We further propose a novel approach, FeatFSDA, to better leverage the few labeled target domain samples as knowledge guidance. FeatFSDA incorporates a latent space semantic adjacency loss, a domain prototypical similarity loss, and a graph-attentive-network-based edge dropout technique. Our approach achieves state-of-the-art performance on all datasets within our FSDA-AR benchmark. To encourage future research of few-shot domain adaptation for video-based activity recognition, we will release our benchmarks and code at https://github.com/KPeng9510/FeatFSDA.
Abstract:In this paper, we tackle the new task of video-based Activated Muscle Group Estimation (AMGE) aiming at identifying active muscle regions during physical activity. To this intent, we provide the MuscleMap136 dataset featuring >15K video clips with 136 different activities and 20 labeled muscle groups. This dataset opens the vistas to multiple video-based applications in sports and rehabilitation medicine. We further complement the main MuscleMap136 dataset, which specifically targets physical exercise, with Muscle-UCF90 and Muscle-HMDB41, which are new variants of the well-known activity recognition benchmarks extended with AMGE annotations. To make the AMGE model applicable in real-life situations, it is crucial to ensure that the model can generalize well to types of physical activities not present during training and involving new combinations of activated muscles. To achieve this, our benchmark also covers an evaluation setting where the model is exposed to activity types excluded from the training set. Our experiments reveal that generalizability of existing architectures adapted for the AMGE task remains a challenge. Therefore, we also propose a new approach, TransM3E, which employs a transformer-based model with cross-modal multi-label knowledge distillation and surpasses all popular video classification models when dealing with both, previously seen and new types of physical activities. The datasets and code will be publicly available at https://github.com/KPeng9510/MuscleMap.
Abstract:Although human action anticipation is a task which is inherently multi-modal, state-of-the-art methods on well known action anticipation datasets leverage this data by applying ensemble methods and averaging scores of unimodal anticipation networks. In this work we introduce transformer based modality fusion techniques, which unify multi-modal data at an early stage. Our Anticipative Feature Fusion Transformer (AFFT) proves to be superior to popular score fusion approaches and presents state-of-the-art results outperforming previous methods on EpicKitchens-100 and EGTEA Gaze+. Our model is easily extensible and allows for adding new modalities without architectural changes. Consequently, we extracted audio features on EpicKitchens-100 which we add to the set of commonly used features in the community.
Abstract:Modality selection is an important step when designing multimodal systems, especially in the case of cross-domain activity recognition as certain modalities are more robust to domain shift than others. However, selecting only the modalities which have a positive contribution requires a systematic approach. We tackle this problem by proposing an unsupervised modality selection method (ModSelect), which does not require any ground-truth labels. We determine the correlation between the predictions of multiple unimodal classifiers and the domain discrepancy between their embeddings. Then, we systematically compute modality selection thresholds, which select only modalities with a high correlation and low domain discrepancy. We show in our experiments that our method ModSelect chooses only modalities with positive contributions and consistently improves the performance on a Synthetic-to-Real domain adaptation benchmark, narrowing the domain gap.
Abstract:Domain shifts, such as appearance changes, are a key challenge in real-world applications of activity recognition models, which range from assistive robotics and smart homes to driver observation in intelligent vehicles. For example, while simulations are an excellent way of economical data collection, a Synthetic-to-Real domain shift leads to a > 60% drop in accuracy when recognizing activities of Daily Living (ADLs). We tackle this challenge and introduce an activity domain generation framework which creates novel ADL appearances (novel domains) from different existing activity modalities (source domains) inferred from video training data. Our framework computes human poses, heatmaps of body joints, and optical flow maps and uses them alongside the original RGB videos to learn the essence of source domains in order to generate completely new ADL domains. The model is optimized by maximizing the distance between the existing source appearances and the generated novel appearances while ensuring that the semantics of an activity is preserved through an additional classification loss. While source data multimodality is an important concept in this design, our setup does not rely on multi-sensor setups, (i.e., all source modalities are inferred from a single video only.) The newly created activity domains are then integrated in the training of the ADL classification networks, resulting in models far less susceptible to changes in data distributions. Extensive experiments on the Synthetic-to-Real benchmark Sims4Action demonstrate the potential of the domain generation paradigm for cross-domain ADL recognition, setting new state-of-the-art results. Our code is publicly available at https://github.com/Zrrr1997/syn2real_DG
Abstract:Visual recognition inside the vehicle cabin leads to safer driving and more intuitive human-vehicle interaction but such systems face substantial obstacles as they need to capture different granularities of driver behaviour while dealing with highly limited body visibility and changing illumination. Multimodal recognition mitigates a number of such issues: prediction outcomes of different sensors complement each other due to different modality-specific strengths and weaknesses. While several late fusion methods have been considered in previously published frameworks, they constantly feature different architecture backbones and building blocks making it very hard to isolate the role of the chosen late fusion strategy itself. This paper presents an empirical evaluation of different paradigms for decision-level late fusion in video-based driver observation. We compare seven different mechanisms for joining the results of single-modal classifiers which have been both popular, (e.g. score averaging) and not yet considered (e.g. rank-level fusion) in the context of driver observation evaluating them based on different criteria and benchmark settings. This is the first systematic study of strategies for fusing outcomes of multimodal predictors inside the vehicles, conducted with the goal to provide guidance for fusion scheme selection.