https://github.com/KPeng9510/MuscleMap.
In this paper, we tackle the new task of video-based Activated Muscle Group Estimation (AMGE) aiming at identifying active muscle regions during physical activity. To this intent, we provide the MuscleMap136 dataset featuring >15K video clips with 136 different activities and 20 labeled muscle groups. This dataset opens the vistas to multiple video-based applications in sports and rehabilitation medicine. We further complement the main MuscleMap136 dataset, which specifically targets physical exercise, with Muscle-UCF90 and Muscle-HMDB41, which are new variants of the well-known activity recognition benchmarks extended with AMGE annotations. To make the AMGE model applicable in real-life situations, it is crucial to ensure that the model can generalize well to types of physical activities not present during training and involving new combinations of activated muscles. To achieve this, our benchmark also covers an evaluation setting where the model is exposed to activity types excluded from the training set. Our experiments reveal that generalizability of existing architectures adapted for the AMGE task remains a challenge. Therefore, we also propose a new approach, TransM3E, which employs a transformer-based model with cross-modal multi-label knowledge distillation and surpasses all popular video classification models when dealing with both, previously seen and new types of physical activities. The datasets and code will be publicly available at