Abstract:When the initial vision of Explainable (XAI) was articulated, the most popular framing was to open the (proverbial) "black-box" of AI so that we could understand the inner workings. With the advent of Large Language Models (LLMs), the very ability to open the black-box is increasingly limited especially when it comes to non-AI expert end-users. In this paper, we challenge the assumption of "opening" the black-box in the LLM era and argue for a shift in our XAI expectations. Highlighting the epistemic blind spots of an algorithm-centered XAI view, we argue that a human-centered perspective can be a path forward. We operationalize the argument by synthesizing XAI research along three dimensions: explainability outside the black-box, explainability around the edges of the black box, and explainability that leverages infrastructural seams. We conclude with takeaways that reflexively inform XAI as a domain.
Abstract:Generative Artificial Intelligence systems have been developed for image, code, story, and game generation with the goal of facilitating human creativity. Recent work on neural generative systems has emphasized one particular means of interacting with AI systems: the user provides a specification, usually in the form of prompts, and the AI system generates the content. However, there are other configurations of human and AI coordination, such as co-creativity (CC) in which both human and AI systems can contribute to content creation, and mixed-initiative (MI) in which both human and AI systems can initiate content changes. In this paper, we define a hypothetical human-AI configuration design space consisting of different means for humans and AI systems to communicate creative intent to each other. We conduct a human participant study with 185 participants to understand how users want to interact with differently configured MI-CC systems. We find out that MI-CC systems with more extensive coverage of the design space are rated higher or on par on a variety of creative and goal-completion metrics, demonstrating that wider coverage of the design space can improve user experience and achievement when using the system; Preference varies greatly between expertise groups, suggesting the development of adaptive, personalized MI-CC systems; Participants identified new design space dimensions including scrutability -- the ability to poke and prod at models -- and explainability.
Abstract:Explainable AI (XAI) systems are sociotechnical in nature; thus, they are subject to the sociotechnical gap--divide between the technical affordances and the social needs. However, charting this gap is challenging. In the context of XAI, we argue that charting the gap improves our problem understanding, which can reflexively provide actionable insights to improve explainability. Utilizing two case studies in distinct domains, we empirically derive a framework that facilitates systematic charting of the sociotechnical gap by connecting AI guidelines in the context of XAI and elucidating how to use them to address the gap. We apply the framework to a third case in a new domain, showcasing its affordances. Finally, we discuss conceptual implications of the framework, share practical considerations in its operationalization, and offer guidance on transferring it to new contexts. By making conceptual and practical contributions to understanding the sociotechnical gap in XAI, the framework expands the XAI design space.
Abstract:Mistakes in AI systems are inevitable, arising from both technical limitations and sociotechnical gaps. While black-boxing AI systems can make the user experience seamless, hiding the seams risks disempowering users to mitigate fallouts from AI mistakes. While Explainable AI (XAI) has predominantly tackled algorithmic opaqueness, we propose that seamful design can foster Humancentered XAI by strategically revealing sociotechnical and infrastructural mismatches. We introduce the notion of Seamful XAI by (1) conceptually transferring "seams" to the AI context and (2) developing a design process that helps stakeholders design with seams, thereby augmenting explainability and user agency. We explore this process with 43 AI practitioners and users, using a scenario-based co-design activity informed by real-world use cases. We share empirical insights, implications, and critical reflections on how this process can help practitioners anticipate and craft seams in AI, how seamfulness can improve explainability, empower end-users, and facilitate Responsible AI.
Abstract:There is a growing frustration amongst researchers and developers in Explainable AI (XAI) around the lack of consensus around what is meant by 'explainability'. Do we need one definition of explainability to rule them all? In this paper, we argue why a singular definition of XAI is neither feasible nor desirable at this stage of XAI's development. We view XAI through the lenses of Social Construction of Technology (SCOT) to explicate how diverse stakeholders (relevant social groups) have different interpretations (interpretative flexibility) that shape the meaning of XAI. Forcing a standardization (closure) on the pluralistic interpretations too early can stifle innovation and lead to premature conclusions. We share how we can leverage the pluralism to make progress in XAI without having to wait for a definitional consensus.
Abstract:When algorithmic harms emerge, a reasonable response is to stop using the algorithm to resolve concerns related to fairness, accountability, transparency, and ethics (FATE). However, just because an algorithm is removed does not imply its FATE-related issues cease to exist. In this paper, we introduce the notion of the "algorithmic imprint" to illustrate how merely removing an algorithm does not necessarily undo or mitigate its consequences. We operationalize this concept and its implications through the 2020 events surrounding the algorithmic grading of the General Certificate of Education (GCE) Advanced (A) Level exams, an internationally recognized UK-based high school diploma exam administered in over 160 countries. While the algorithmic standardization was ultimately removed due to global protests, we show how the removal failed to undo the algorithmic imprint on the sociotechnical infrastructures that shape students', teachers', and parents' lives. These events provide a rare chance to analyze the state of the world both with and without algorithmic mediation. We situate our case study in Bangladesh to illustrate how algorithms made in the Global North disproportionately impact stakeholders in the Global South. Chronicling more than a year-long community engagement consisting of 47 inter-views, we present the first coherent timeline of "what" happened in Bangladesh, contextualizing "why" and "how" they happened through the lenses of the algorithmic imprint and situated algorithmic fairness. Analyzing these events, we highlight how the contours of the algorithmic imprints can be inferred at the infrastructural, social, and individual levels. We share conceptual and practical implications around how imprint-awareness can (a) broaden the boundaries of how we think about algorithmic impact, (b) inform how we design algorithms, and (c) guide us in AI governance.
Abstract:To make Explainable AI (XAI) systems trustworthy, understanding harmful effects is just as important as producing well-designed explanations. In this paper, we address an important yet unarticulated type of negative effect in XAI. We introduce explainability pitfalls(EPs), unanticipated negative downstream effects from AI explanations manifesting even when there is no intention to manipulate users. EPs are different from, yet related to, dark patterns, which are intentionally deceptive practices. We articulate the concept of EPs by demarcating it from dark patterns and highlighting the challenges arising from uncertainties around pitfalls. We situate and operationalize the concept using a case study that showcases how, despite best intentions, unsuspecting negative effects such as unwarranted trust in numerical explanations can emerge. We propose proactive and preventative strategies to address EPs at three interconnected levels: research, design, and organizational.
Abstract:Explainability of AI systems is critical for users to take informed actions and hold systems accountable. While "opening the opaque box" is important, understanding who opens the box can govern if the Human-AI interaction is effective. In this paper, we conduct a mixed-methods study of how two different groups of whos--people with and without a background in AI--perceive different types of AI explanations. These groups were chosen to look at how disparities in AI backgrounds can exacerbate the creator-consumer gap. We quantitatively share what the perceptions are along five dimensions: confidence, intelligence, understandability, second chance, and friendliness. Qualitatively, we highlight how the AI background influences each group's interpretations and elucidate why the differences might exist through the lenses of appropriation and cognitive heuristics. We find that (1) both groups had unwarranted faith in numbers, to different extents and for different reasons, (2) each group found explanatory values in different explanations that went beyond the usage we designed them for, and (3) each group had different requirements of what counts as humanlike explanations. Using our findings, we discuss potential negative consequences such as harmful manipulation of user trust and propose design interventions to mitigate them. By bringing conscious awareness to how and why AI backgrounds shape perceptions of potential creators and consumers in XAI, our work takes a formative step in advancing a pluralistic Human-centered Explainable AI discourse.
Abstract:Several social factors impact how people respond to AI explanations used to justify AI decisions affecting them personally. In this position paper, we define a framework called the \textit{layers of explanation} (LEx), a lens through which we can assess the appropriateness of different types of explanations. The framework uses the notions of \textit{sensitivity} (emotional responsiveness) of features and the level of \textit{stakes} (decision's consequence) in a domain to determine whether different types of explanations are \textit{appropriate} in a given context. We demonstrate how to use the framework to assess the appropriateness of different types of explanations in different domains.
Abstract:As AI-powered systems increasingly mediate consequential decision-making, their explainability is critical for end-users to take informed and accountable actions. Explanations in human-human interactions are socially-situated. AI systems are often socio-organizationally embedded. However, Explainable AI (XAI) approaches have been predominantly algorithm-centered. We take a developmental step towards socially-situated XAI by introducing and exploring Social Transparency (ST), a sociotechnically informed perspective that incorporates the socio-organizational context into explaining AI-mediated decision-making. To explore ST conceptually, we conducted interviews with 29 AI users and practitioners grounded in a speculative design scenario. We suggested constitutive design elements of ST and developed a conceptual framework to unpack ST's effect and implications at the technical, decision-making, and organizational level. The framework showcases how ST can potentially calibrate trust in AI, improve decision-making, facilitate organizational collective actions, and cultivate holistic explainability. Our work contributes to the discourse of Human-Centered XAI by expanding the design space of XAI.