Nanyang Technological University, Singapore
Abstract:Traffic signs play a key role in assisting autonomous driving systems (ADS) by enabling the assessment of vehicle behavior in compliance with traffic regulations and providing navigation instructions. However, current works are limited to basic sign understanding without considering the egocentric vehicle's spatial position, which fails to support further regulation assessment and direction navigation. Following the above issues, we introduce a new task: traffic sign interpretation from the vehicle's first-person view, referred to as TSI-FPV. Meanwhile, we develop a traffic guidance assistant (TGA) scenario application to re-explore the role of traffic signs in ADS as a complement to popular autonomous technologies (such as obstacle perception). Notably, TGA is not a replacement for electronic map navigation; rather, TGA can be an automatic tool for updating it and complementing it in situations such as offline conditions or temporary sign adjustments. Lastly, a spatial and semantic logic-aware stepwise reasoning pipeline (SignEye) is constructed to achieve the TSI-FPV and TGA, and an application-specific dataset (Traffic-CN) is built. Experiments show that TSI-FPV and TGA are achievable via our SignEye trained on Traffic-CN. The results also demonstrate that the TGA can provide complementary information to ADS beyond existing popular autonomous technologies.
Abstract:Multimedia file fragment classification (MFFC) aims to identify file fragment types, e.g., image/video, audio, and text without system metadata. It is of vital importance in multimedia storage and communication. Existing MFFC methods typically treat fragments as 1D byte sequences and emphasize the relations between separate bytes (interbytes) for classification. However, the more informative relations inside bytes (intrabytes) are overlooked and seldom investigated. By looking inside bytes, the bit-level details of file fragments can be accessed, enabling a more accurate classification. Motivated by this, we first propose Byte2Image, a novel visual representation model that incorporates previously overlooked intrabyte information into file fragments and reinterprets these fragments as 2D grayscale images. This model involves a sliding byte window to reveal the intrabyte information and a rowwise stacking of intrabyte ngrams for embedding fragments into a 2D space. Thus, complex interbyte and intrabyte correlations can be mined simultaneously using powerful vision networks. Additionally, we propose an end-to-end dual-branch network ByteNet to enhance robust correlation mining and feature representation. ByteNet makes full use of the raw 1D byte sequence and the converted 2D image through a shallow byte branch feature extraction (BBFE) and a deep image branch feature extraction (IBFE) network. In particular, the BBFE, composed of a single fully-connected layer, adaptively recognizes the co-occurrence of several some specific bytes within the raw byte sequence, while the IBFE, built on a vision Transformer, effectively mines the complex interbyte and intrabyte correlations from the converted image. Experiments on the two representative benchmarks, including 14 cases, validate that our proposed method outperforms state-of-the-art approaches on different cases by up to 12.2%.
Abstract:Embodied learning for object-centric robotic manipulation is a rapidly developing and challenging area in embodied AI. It is crucial for advancing next-generation intelligent robots and has garnered significant interest recently. Unlike data-driven machine learning methods, embodied learning focuses on robot learning through physical interaction with the environment and perceptual feedback, making it especially suitable for robotic manipulation. In this paper, we provide a comprehensive survey of the latest advancements in this field and categorize the existing work into three main branches: 1) Embodied perceptual learning, which aims to predict object pose and affordance through various data representations; 2) Embodied policy learning, which focuses on generating optimal robotic decisions using methods such as reinforcement learning and imitation learning; 3) Embodied task-oriented learning, designed to optimize the robot's performance based on the characteristics of different tasks in object grasping and manipulation. In addition, we offer an overview and discussion of public datasets, evaluation metrics, representative applications, current challenges, and potential future research directions. A project associated with this survey has been established at https://github.com/RayYoh/OCRM_survey.
Abstract:Physical attacks against object detection have gained increasing attention due to their significant practical implications. However, conducting physical experiments is extremely time-consuming and labor-intensive. Moreover, physical dynamics and cross-domain transformation are challenging to strictly regulate in the real world, leading to unaligned evaluation and comparison, severely hindering the development of physically robust models. To accommodate these challenges, we explore utilizing realistic simulation to thoroughly and rigorously benchmark physical attacks with fairness under controlled physical dynamics and cross-domain transformation. This resolves the problem of capturing identical adversarial images that cannot be achieved in the real world. Our benchmark includes 20 physical attack methods, 48 object detectors, comprehensive physical dynamics, and evaluation metrics. We also provide end-to-end pipelines for dataset generation, detection, evaluation, and further analysis. In addition, we perform 8064 groups of evaluation based on our benchmark, which includes both overall evaluation and further detailed ablation studies for controlled physical dynamics. Through these experiments, we provide in-depth analyses of physical attack performance and physical adversarial robustness, draw valuable observations, and discuss potential directions for future research. Codebase: https://github.com/JiaweiLian/Benchmarking_Physical_Attack
Abstract:In recent years, transformer-based models have exhibited considerable potential in point cloud instance segmentation. Despite the promising performance achieved by existing methods, they encounter challenges such as instance query initialization problems and excessive reliance on stacked layers, rendering them incompatible with large-scale 3D scenes. This paper introduces a novel method, named SGIFormer, for 3D instance segmentation, which is composed of the Semantic-guided Mix Query (SMQ) initialization and the Geometric-enhanced Interleaving Transformer (GIT) decoder. Specifically, the principle of our SMQ initialization scheme is to leverage the predicted voxel-wise semantic information to implicitly generate the scene-aware query, yielding adequate scene prior and compensating for the learnable query set. Subsequently, we feed the formed overall query into our GIT decoder to alternately refine instance query and global scene features for further capturing fine-grained information and reducing complex design intricacies simultaneously. To emphasize geometric property, we consider bias estimation as an auxiliary task and progressively integrate shifted point coordinates embedding to reinforce instance localization. SGIFormer attains state-of-the-art performance on ScanNet V2, ScanNet200 datasets, and the challenging high-fidelity ScanNet++ benchmark, striking a balance between accuracy and efficiency. The code, weights, and demo videos are publicly available at https://rayyoh.github.io/sgiformer.
Abstract:Egocentric hand-object segmentation (EgoHOS) is a brand-new task aiming at segmenting the hands and interacting objects in the egocentric image. Although significant advancements have been achieved by current methods, establishing an end-to-end model with high accuracy remains an unresolved challenge. Moreover, existing methods lack explicit modeling of the relationships between hands and objects as well as objects and objects, thereby disregarding critical information on hand-object interaction and introducing confusion into algorithms, ultimately leading to a reduction in segmentation performance. To address the limitations of existing methods, this paper proposes a novel end-to-end Object-centric Relationship Modeling Network (ORMNet) for EgoHOS. Specifically, based on a single-encoder and multi-decoder framework, we design the Hand-Object Relation (HOR) module to leverage hand-guided attention to capture the correlation between hands and objects and facilitate their representations. Moreover, based on the observed interrelationships between diverse categories of objects, we introduce the Object Relation Decoupling (ORD) strategy. This strategy allows the decoupling of the two-hand object during training, thereby alleviating the ambiguity of the network. Experimental results on three datasets show that the proposed ORMNet has notably exceptional segmentation performance with robust generalization capabilities.
Abstract:In this report, we present our champion solution for EPIC-KITCHENS-100 Multi-Instance Retrieval Challenge in CVPR 2024. Essentially, this challenge differs from traditional visual-text retrieval tasks by providing a correlation matrix that acts as a set of soft labels for video-text clip combinations. However, existing loss functions have not fully exploited this information. Motivated by this, we propose a novel loss function, Symmetric Multi-Similarity Loss, which offers a more precise learning objective. Together with tricks and ensemble learning, the model achieves 63.76% average mAP and 74.25% average nDCG on the public leaderboard, demonstrating the effectiveness of our approach. Our code will be released at: https://github.com/xqwang14/SMS-Loss/tree/main
Abstract:3D occupancy perception technology aims to observe and understand dense 3D environments for autonomous vehicles. Owing to its comprehensive perception capability, this technology is emerging as a trend in autonomous driving perception systems, and is attracting significant attention from both industry and academia. Similar to traditional bird's-eye view (BEV) perception, 3D occupancy perception has the nature of multi-source input and the necessity for information fusion. However, the difference is that it captures vertical structures that are ignored by 2D BEV. In this survey, we review the most recent works on 3D occupancy perception, and provide in-depth analyses of methodologies with various input modalities. Specifically, we summarize general network pipelines, highlight information fusion techniques, and discuss effective network training. We evaluate and analyze the occupancy perception performance of the state-of-the-art on the most popular datasets. Furthermore, challenges and future research directions are discussed. We hope this report will inspire the community and encourage more research work on 3D occupancy perception. A comprehensive list of studies in this survey is available in an active repository that continuously collects the latest work: https://github.com/HuaiyuanXu/3D-Occupancy-Perception.
Abstract:Online Class Incremental Learning (OCIL) aims to train the model in a task-by-task manner, where data arrive in mini-batches at a time while previous data are not accessible. A significant challenge is known as Catastrophic Forgetting, i.e., loss of the previous knowledge on old data. To address this, replay-based methods show competitive results but invade data privacy, while exemplar-free methods protect data privacy but struggle for accuracy. In this paper, we proposed an exemplar-free approach -- Analytic Online Class Incremental Learning (AOCIL). Instead of back-propagation, we design the Analytic Classifier (AC) updated by recursive least square, cooperating with a frozen backbone. AOCIL simultaneously achieves high accuracy, low resource consumption and data privacy protection. We conduct massive experiments on four existing benchmark datasets, and the results demonstrate the strong capability of handling OCIL scenarios. Codes will be ready.
Abstract:While super-resolution (SR) methods based on diffusion models exhibit promising results, their practical application is hindered by the substantial number of required inference steps. Recent methods utilize degraded images in the initial state, thereby shortening the Markov chain. Nevertheless, these solutions either rely on a precise formulation of the degradation process or still necessitate a relatively lengthy generation path (e.g., 15 iterations). To enhance inference speed, we propose a simple yet effective method for achieving single-step SR generation, named SinSR. Specifically, we first derive a deterministic sampling process from the most recent state-of-the-art (SOTA) method for accelerating diffusion-based SR. This allows the mapping between the input random noise and the generated high-resolution image to be obtained in a reduced and acceptable number of inference steps during training. We show that this deterministic mapping can be distilled into a student model that performs SR within only one inference step. Additionally, we propose a novel consistency-preserving loss to simultaneously leverage the ground-truth image during the distillation process, ensuring that the performance of the student model is not solely bound by the feature manifold of the teacher model, resulting in further performance improvement. Extensive experiments conducted on synthetic and real-world datasets demonstrate that the proposed method can achieve comparable or even superior performance compared to both previous SOTA methods and the teacher model, in just one sampling step, resulting in a remarkable up to x10 speedup for inference. Our code will be released at https://github.com/wyf0912/SinSR