Abstract:Multimedia file fragment classification (MFFC) aims to identify file fragment types, e.g., image/video, audio, and text without system metadata. It is of vital importance in multimedia storage and communication. Existing MFFC methods typically treat fragments as 1D byte sequences and emphasize the relations between separate bytes (interbytes) for classification. However, the more informative relations inside bytes (intrabytes) are overlooked and seldom investigated. By looking inside bytes, the bit-level details of file fragments can be accessed, enabling a more accurate classification. Motivated by this, we first propose Byte2Image, a novel visual representation model that incorporates previously overlooked intrabyte information into file fragments and reinterprets these fragments as 2D grayscale images. This model involves a sliding byte window to reveal the intrabyte information and a rowwise stacking of intrabyte ngrams for embedding fragments into a 2D space. Thus, complex interbyte and intrabyte correlations can be mined simultaneously using powerful vision networks. Additionally, we propose an end-to-end dual-branch network ByteNet to enhance robust correlation mining and feature representation. ByteNet makes full use of the raw 1D byte sequence and the converted 2D image through a shallow byte branch feature extraction (BBFE) and a deep image branch feature extraction (IBFE) network. In particular, the BBFE, composed of a single fully-connected layer, adaptively recognizes the co-occurrence of several some specific bytes within the raw byte sequence, while the IBFE, built on a vision Transformer, effectively mines the complex interbyte and intrabyte correlations from the converted image. Experiments on the two representative benchmarks, including 14 cases, validate that our proposed method outperforms state-of-the-art approaches on different cases by up to 12.2%.
Abstract:Optical imaging systems are generally limited by the depth of field because of the nature of the optics. Therefore, extending depth of field (EDoF) is a fundamental task for meeting the requirements of emerging visual applications. To solve this task, the common practice is using multi-focus images from a single viewpoint. This method can obtain acceptable quality of EDoF under the condition of fixed field of view, but it is only applicable to static scenes and the field of view is limited and fixed. An emerging data type, varifocal multiview images have the potential to become a new paradigm for solving the EDoF, because the data contains more field of view information than multi-focus images. To realize EDoF of varifocal multiview images, we propose an end-to-end method for the EDoF, including image alignment, image optimization and image fusion. Experimental results demonstrate the efficiency of the proposed method.
Abstract:Temporal sentence grounding involves the retrieval of a video moment with a natural language query. Many existing works directly incorporate the given video and temporally localized query for temporal grounding, overlooking the inherent domain gap between different modalities. In this paper, we utilize pseudo-query features containing extensive temporally global textual knowledge sourced from the same video-query pair, to enhance the bridging of domain gaps and attain a heightened level of similarity between multi-modal features. Specifically, we propose a Pseudo-query Intermediary Network (PIN) to achieve an improved alignment of visual and comprehensive pseudo-query features within the feature space through contrastive learning. Subsequently, we utilize learnable prompts to encapsulate the knowledge of pseudo-queries, propagating them into the textual encoder and multi-modal fusion module, further enhancing the feature alignment between visual and language for better temporal grounding. Extensive experiments conducted on the Charades-STA and ActivityNet-Captions datasets demonstrate the effectiveness of our method.
Abstract:The past decade has witnessed great strides in video recovery by specialist technologies, like video inpainting, completion, and error concealment. However, they typically simulate the missing content by manual-designed error masks, thus failing to fill in the realistic video loss in video communication (e.g., telepresence, live streaming, and internet video) and multimedia forensics. To address this, we introduce the bitstream-corrupted video (BSCV) benchmark, the first benchmark dataset with more than 28,000 video clips, which can be used for bitstream-corrupted video recovery in the real world. The BSCV is a collection of 1) a proposed three-parameter corruption model for video bitstream, 2) a large-scale dataset containing rich error patterns, multiple corruption levels, and flexible dataset branches, and 3) a plug-and-play module in video recovery framework that serves as a benchmark. We evaluate state-of-the-art video inpainting methods on the BSCV dataset, demonstrating existing approaches' limitations and our framework's advantages in solving the bitstream-corrupted video recovery problem. The benchmark and dataset are released at https://github.com/LIUTIGHE/BSCV-Dataset.
Abstract:File fragment classification (FFC) on small chunks of memory is essential in memory forensics and Internet security. Existing methods mainly treat file fragments as 1d byte signals and utilize the captured inter-byte features for classification, while the bit information within bytes, i.e., intra-byte information, is seldom considered. This is inherently inapt for classifying variable-length coding files whose symbols are represented as the variable number of bits. Conversely, we propose Byte2Image, a novel data augmentation technique, to introduce the neglected intra-byte information into file fragments and re-treat them as 2d gray-scale images, which allows us to capture both inter-byte and intra-byte correlations simultaneously through powerful convolutional neural networks (CNNs). Specifically, to convert file fragments to 2d images, we employ a sliding byte window to expose the neglected intra-byte information and stack their n-gram features row by row. We further propose a byte sequence \& image fusion network as a classifier, which can jointly model the raw 1d byte sequence and the converted 2d image to perform FFC. Experiments on FFT-75 dataset validate that our proposed method can achieve notable accuracy improvements over state-of-the-art methods in nearly all scenarios. The code will be released at https://github.com/wenyang001/Byte2Image.
Abstract:Multiview images have flexible field of view (FoV) but inflexible depth of field (DoF). To overcome the limitation of multiview images on visual tasks, in this paper, we present varifocal multiview (VFMV) images with flexible DoF. VFMV images are captured by focusing a scene on distinct depths by varying focal planes, and each view only focused on one single plane.Therefore, VFMV images contain more information in focal dimension than multiview images, and can provide a rich representation for 3D scene by considering both FoV and DoF. The characteristics of VFMV images are useful for visual tasks to achieve high quality scene representation. Two experiments are conducted to validate the advantages of VFMV images in 4D light field feature detection and 3D reconstruction. Experiment results show that VFMV images can detect more light field features and achieve higher reconstruction quality due to informative focus cues. This work demonstrates that VFMV images have definite advantages over multiview images in visual tasks.