Due to massive computational demands of large generative models, AI-Generated Content (AIGC) can organize collaborative Mobile AIGC Service Providers (MASPs) at network edges to provide ubiquitous and customized content generation for resource-constrained users. However, such a paradigm faces two significant challenges: 1) raw prompts (i.e., the task description from users) often lead to poor generation quality due to users' lack of experience with specific AIGC models, and 2) static service provisioning fails to efficiently utilize computational and communication resources given the heterogeneity of AIGC tasks. To address these challenges, we propose an intelligent mobile AIGC service scheme. Firstly, we develop an interactive prompt engineering mechanism that leverages a Large Language Model (LLM) to generate customized prompt corpora and employs Inverse Reinforcement Learning (IRL) for policy imitation through small-scale expert demonstrations. Secondly, we formulate a dynamic mobile AIGC service provisioning problem that jointly optimizes the number of inference trials and transmission power allocation. Then, we propose the Diffusion-Enhanced Deep Deterministic Policy Gradient (D3PG) algorithm to solve the problem. By incorporating the diffusion process into Deep Reinforcement Learning (DRL) architecture, the environment exploration capability can be improved, thus adapting to varying mobile AIGC scenarios. Extensive experimental results demonstrate that our prompt engineering approach improves single-round generation success probability by 6.3 times, while D3PG increases the user service experience by 67.8% compared to baseline DRL approaches.