Abstract:Large Language Model-based Multi-Agent Systems (LLM-MASs) have demonstrated remarkable real-world capabilities, effectively collaborating to complete complex tasks. While these systems are designed with safety mechanisms, such as rejecting harmful instructions through alignment, their security remains largely unexplored. This gap leaves LLM-MASs vulnerable to targeted disruptions. In this paper, we introduce Contagious Recursive Blocking Attacks (Corba), a novel and simple yet highly effective attack that disrupts interactions between agents within an LLM-MAS. Corba leverages two key properties: its contagious nature allows it to propagate across arbitrary network topologies, while its recursive property enables sustained depletion of computational resources. Notably, these blocking attacks often involve seemingly benign instructions, making them particularly challenging to mitigate using conventional alignment methods. We evaluate Corba on two widely-used LLM-MASs, namely, AutoGen and Camel across various topologies and commercial models. Additionally, we conduct more extensive experiments in open-ended interactive LLM-MASs, demonstrating the effectiveness of Corba in complex topology structures and open-source models. Our code is available at: https://github.com/zhrli324/Corba.
Abstract:As LLM-based agents become increasingly prevalent, backdoors can be implanted into agents through user queries or environment feedback, raising critical concerns regarding safety vulnerabilities. However, backdoor attacks are typically detectable by safety audits that analyze the reasoning process of agents. To this end, we propose a novel backdoor implantation strategy called \textbf{Dynamically Encrypted Multi-Backdoor Implantation Attack}. Specifically, we introduce dynamic encryption, which maps the backdoor into benign content, effectively circumventing safety audits. To enhance stealthiness, we further decompose the backdoor into multiple sub-backdoor fragments. Based on these advancements, backdoors are allowed to bypass safety audits significantly. Additionally, we present AgentBackdoorEval, a dataset designed for the comprehensive evaluation of agent backdoor attacks. Experimental results across multiple datasets demonstrate that our method achieves an attack success rate nearing 100\% while maintaining a detection rate of 0\%, illustrating its effectiveness in evading safety audits. Our findings highlight the limitations of existing safety mechanisms in detecting advanced attacks, underscoring the urgent need for more robust defenses against backdoor threats. Code and data are available at https://github.com/whfeLingYu/DemonAgent.
Abstract:This paper studies how to improve the performance of Low-Rank Adaption (LoRA) as guided by our theoretical analysis. Our first set of theoretical results show that for random initialization and linear models, \textit{i)} LoRA will align to the certain singular subspace of one-step gradient of full fine-tuning; \textit{ii)} preconditioners improve convergence in the high-rank case. These insights motivate us to focus on preconditioned LoRA using a specific spectral initialization strategy for aligning with certain subspaces. For both linear and nonlinear models, we prove that alignment and generalization guarantees can be directly achieved at initialization, and the subsequent linear convergence can be also built. Our analysis leads to the \emph{LoRA-One} algorithm (using \emph{One}-step gradient and preconditioning), a theoretically grounded algorithm that achieves significant empirical improvement over vanilla LoRA and its variants on several benchmarks. Our theoretical analysis, based on decoupling the learning dynamics and characterizing how spectral initialization contributes to feature learning, may be of independent interest for understanding matrix sensing and deep learning theory. The source code can be found in the https://github.com/YuanheZ/LoRA-One.
Abstract:Large Language Models (LLMs) have demonstrated remarkable performance across diverse tasks. LLMs continue to be vulnerable to external threats, particularly Denial-of-Service (DoS) attacks. Specifically, LLM-DoS attacks aim to exhaust computational resources and block services. However, prior works tend to focus on performing white-box attacks, overlooking black-box settings. In this work, we propose an automated algorithm designed for black-box LLMs, called Auto-Generation for LLM-DoS Attack (AutoDoS). AutoDoS introduces DoS Attack Tree and optimizes the prompt node coverage to enhance effectiveness under black-box conditions. Our method can bypass existing defense with enhanced stealthiness via semantic improvement of prompt nodes. Furthermore, we reveal that implanting Length Trojan in Basic DoS Prompt aids in achieving higher attack efficacy. Experimental results show that AutoDoS amplifies service response latency by over 250 $\times \uparrow$, leading to severe resource consumption in terms of GPU utilization and memory usage. Our code is available at \url{https://github.com/shuita2333/AutoDoS}.
Abstract:Recently proposed quasi-Bayesian (QB) methods initiated a new era in Bayesian computation by directly constructing the Bayesian predictive distribution through recursion, removing the need for expensive computations involved in sampling the Bayesian posterior distribution. This has proved to be data-efficient for univariate predictions, but extensions to multiple dimensions rely on a conditional decomposition resulting from predefined assumptions on the kernel of the Dirichlet Process Mixture Model, which is the implicit nonparametric model used. Here, we propose a different way to extend Quasi-Bayesian prediction to high dimensions through the use of Sklar's theorem by decomposing the predictive distribution into one-dimensional predictive marginals and a high-dimensional copula. Thus, we use the efficient recursive QB construction for the one-dimensional marginals and model the dependence using highly expressive vine copulas. Further, we tune hyperparameters using robust divergences (eg. energy score) and show that our proposed Quasi-Bayesian Vine (QB-Vine) is a fully non-parametric density estimator with \emph{an analytical form} and convergence rate independent of the dimension of data in some situations. Our experiments illustrate that the QB-Vine is appropriate for high dimensional distributions ($\sim$64), needs very few samples to train ($\sim$200) and outperforms state-of-the-art methods with analytical forms for density estimation and supervised tasks by a considerable margin.