Abstract:Large Language Models (LLMs) have been demonstrated to generate illegal or unethical responses, particularly when subjected to "jailbreak." Research on jailbreak has highlighted the safety issues of LLMs. However, prior studies have predominantly focused on single-turn dialogue, ignoring the potential complexities and risks presented by multi-turn dialogue, a crucial mode through which humans derive information from LLMs. In this paper, we argue that humans could exploit multi-turn dialogue to induce LLMs into generating harmful information. LLMs may not intend to reject cautionary or borderline unsafe queries, even if each turn is closely served for one malicious purpose in a multi-turn dialogue. Therefore, by decomposing an unsafe query into several sub-queries for multi-turn dialogue, we induced LLMs to answer harmful sub-questions incrementally, culminating in an overall harmful response. Our experiments, conducted across a wide range of LLMs, indicate current inadequacies in the safety mechanisms of LLMs in multi-turn dialogue. Our findings expose vulnerabilities of LLMs in complex scenarios involving multi-turn dialogue, presenting new challenges for the safety of LLMs.
Abstract:Real-time intelligent detection and prediction of subjects' behavior particularly their movements or actions is critical in the ward. This approach offers the advantage of reducing in-hospital care costs and improving the efficiency of healthcare workers, which is especially true for scenarios at night or during peak admission periods. Therefore, in this work, we propose using computer vision (CV) and deep learning (DL) methods for detecting subjects and recognizing their actions. We utilize OpenPose as an accurate subject detector for recognizing the positions of human subjects in the video stream. Additionally, we employ AlphAction's Asynchronous Interaction Aggregation (AIA) network to predict the actions of detected subjects. This integrated model, referred to as PoseAction, is proposed. At the same time, the proposed model is further trained to predict 12 common actions in ward areas, such as staggering, chest pain, and falling down, using medical-related video clips from the NTU RGB+D and NTU RGB+D 120 datasets. The results demonstrate that PoseAction achieves the highest classification mAP of 98.72% (IoU@0.5). Additionally, this study develops an online real-time mode for action recognition, which strongly supports the clinical translation of PoseAction. Furthermore, using OpenPose's function for recognizing face key points, we also implement face blurring, which is a practical solution to address the privacy protection concerns of patients and healthcare workers. Nevertheless, the training data for PoseAction is currently limited, particularly in terms of label diversity. Consequently, the subsequent step involves utilizing a more diverse dataset (including general actions) to train the model's parameters for improved generalization.