Abstract:In this paper, we construct a large-scale benchmark dataset for Ground-to-Aerial Video-based person Re-Identification, named G2A-VReID, which comprises 185,907 images and 5,576 tracklets, featuring 2,788 distinct identities. To our knowledge, this is the first dataset for video ReID under Ground-to-Aerial scenarios. G2A-VReID dataset has the following characteristics: 1) Drastic view changes; 2) Large number of annotated identities; 3) Rich outdoor scenarios; 4) Huge difference in resolution. Additionally, we propose a new benchmark approach for cross-platform ReID by transforming the cross-platform visual alignment problem into visual-semantic alignment through vision-language model (i.e., CLIP) and applying a parameter-efficient Video Set-Level-Adapter module to adapt image-based foundation model to video ReID tasks, termed VSLA-CLIP. Besides, to further reduce the great discrepancy across the platforms, we also devise the platform-bridge prompts for efficient visual feature alignment. Extensive experiments demonstrate the superiority of the proposed method on all existing video ReID datasets and our proposed G2A-VReID dataset.
Abstract:Semantic segmentation of remote sensing images is a challenging and hot issue due to the large amount of unlabeled data. Unsupervised domain adaptation (UDA) has proven to be advantageous in incorporating unclassified information from the target domain. However, independently fine-tuning UDA models on the source and target domains has a limited effect on the outcome. This paper proposes a hybrid training strategy as well as a novel dual-domain image fusion strategy that effectively utilizes the original image, transformation image, and intermediate domain information. Moreover, to enhance the precision of pseudo-labels, we present a pseudo-label region-specific weight strategy. The efficacy of our approach is substantiated by extensive benchmark experiments and ablation studies conducted on the ISPRS Vaihingen and Potsdam datasets.
Abstract:Semantic segmentation is an important and popular research area in computer vision that focuses on classifying pixels in an image based on their semantics. However, supervised deep learning requires large amounts of data to train models and the process of labeling images pixel by pixel is time-consuming and laborious. This review aims to provide a first comprehensive and organized overview of the state-of-the-art research results on pseudo-label methods in the field of semi-supervised semantic segmentation, which we categorize from different perspectives and present specific methods for specific application areas. In addition, we explore the application of pseudo-label technology in medical and remote-sensing image segmentation. Finally, we also propose some feasible future research directions to address the existing challenges.
Abstract:This paper investigates the zero-shot object goal visual navigation problem. In the object goal visual navigation task, the agent needs to locate navigation targets from its egocentric visual input. "Zero-shot" means that the target the agent needs to find is not trained during the training phase. To address the issue of coupling navigation ability with target features during training, we propose the Class-Independent Relationship Network (CIRN). This method combines target detection information with the relative semantic similarity between the target and the navigation target, and constructs a brand new state representation based on similarity ranking, this state representation does not include target feature or environment feature, effectively decoupling the agent's navigation ability from target features. And a Graph Convolutional Network (GCN) is employed to learn the relationships between different objects based on their similarities. During testing, our approach demonstrates strong generalization capabilities, including zero-shot navigation tasks with different targets and environments. Through extensive experiments in the AI2-THOR virtual environment, our method outperforms the current state-of-the-art approaches in the zero-shot object goal visual navigation task. Furthermore, we conducted experiments in more challenging cross-target and cross-scene settings, which further validate the robustness and generalization ability of our method. Our code is available at: https://github.com/SmartAndCleverRobot/ICRA-CIRN.
Abstract:Camouflaged object detection (COD), aiming to segment camouflaged objects which exhibit similar patterns with the background, is a challenging task. Most existing works are dedicated to establishing specialized modules to identify camouflaged objects with complete and fine details, while the boundary can not be well located for the lack of object-related semantics. In this paper, we propose a novel ``pre-train, adapt and detect" paradigm to detect camouflaged objects. By introducing a large pre-trained model, abundant knowledge learned from massive multi-modal data can be directly transferred to COD. A lightweight parallel adapter is inserted to adjust the features suitable for the downstream COD task. Extensive experiments on four challenging benchmark datasets demonstrate that our method outperforms existing state-of-the-art COD models by large margins. Moreover, we design a multi-task learning scheme for tuning the adapter to exploit the shareable knowledge across different semantic classes. Comprehensive experimental results showed that the generalization ability of our model can be substantially improved with multi-task adapter initialization on source tasks and multi-task adaptation on target tasks.