Abstract:Large Language Models (LLMs) have recently garnered significant attention, primarily for their capabilities in text-based interactions. However, natural human interaction often relies on speech, necessitating a shift towards voice-based models. A straightforward approach to achieve this involves a pipeline of ``Automatic Speech Recognition (ASR) + LLM + Text-to-Speech (TTS)", where input speech is transcribed to text, processed by an LLM, and then converted back to speech. Despite being straightforward, this method suffers from inherent limitations, such as information loss during modality conversion and error accumulation across the three stages. To address these issues, Speech Language Models (SpeechLMs) -- end-to-end models that generate speech without converting from text -- have emerged as a promising alternative. This survey paper provides the first comprehensive overview of recent methodologies for constructing SpeechLMs, detailing the key components of their architecture and the various training recipes integral to their development. Additionally, we systematically survey the various capabilities of SpeechLMs, categorize the evaluation metrics for SpeechLMs, and discuss the challenges and future research directions in this rapidly evolving field.
Abstract:Tokenising continuous speech into sequences of discrete tokens and modelling them with language models (LMs) has led to significant success in text-to-speech (TTS) synthesis. Although these models can generate speech with high quality and naturalness, their synthesised samples can still suffer from artefacts, mispronunciation, word repeating, etc. In this paper, we argue these undesirable properties could partly be caused by the randomness of sampling-based strategies during the autoregressive decoding of LMs. Therefore, we look at maximisation-based decoding approaches and propose Temporal Repetition Aware Diverse Beam Search (TRAD-BS) to find the most probable sequences of the generated speech tokens. Experiments with two state-of-the-art LM-based TTS models demonstrate that our proposed maximisation-based decoding strategy generates speech with fewer mispronunciations and improved speaker consistency.
Abstract:Neural text-to-speech systems are often optimized on L1/L2 losses, which make strong assumptions about the distributions of the target data space. Aiming to improve those assumptions, Normalizing Flows and Diffusion Probabilistic Models were recently proposed as alternatives. In this paper, we compare traditional L1/L2-based approaches to diffusion and flow-based approaches for the tasks of prosody and mel-spectrogram prediction for text-to-speech synthesis. We use a prosody model to generate log-f0 and duration features, which are used to condition an acoustic model that generates mel-spectrograms. Experimental results demonstrate that the flow-based model achieves the best performance for spectrogram prediction, improving over equivalent diffusion and L1 models. Meanwhile, both diffusion and flow-based prosody predictors result in significant improvements over a typical L2-trained prosody models.
Abstract:This paper is about developing personalized speech synthesis systems with recordings of mildly impaired speech. In particular, we consider consonant and vowel alterations resulted from partial glossectomy, the surgical removal of part of the tongue. The aim is to restore articulation in the synthesized speech and maximally preserve the target speaker's individuality. We propose to tackle the problem with guided diffusion models. Specifically, a diffusion-based speech synthesis model is trained on original recordings, to capture and preserve the target speaker's original articulation style. When using the model for inference, a separately trained phone classifier will guide the synthesis process towards proper articulation. Objective and subjective evaluation results show that the proposed method substantially improves articulation in the synthesized speech over original recordings, and preserves more of the target speaker's individuality than a voice conversion baseline.
Abstract:The capability of generating speech with specific type of emotion is desired for many applications of human-computer interaction. Cross-speaker emotion transfer is a common approach to generating emotional speech when speech with emotion labels from target speakers is not available for model training. This paper presents a novel cross-speaker emotion transfer system, named iEmoTTS. The system is composed of an emotion encoder, a prosody predictor, and a timbre encoder. The emotion encoder extracts the identity of emotion type as well as the respective emotion intensity from the mel-spectrogram of input speech. The emotion intensity is measured by the posterior probability that the input utterance carries that emotion. The prosody predictor is used to provide prosodic features for emotion transfer. The timber encoder provides timbre-related information for the system. Unlike many other studies which focus on disentangling speaker and style factors of speech, the iEmoTTS is designed to achieve cross-speaker emotion transfer via disentanglement between prosody and timbre. Prosody is considered as the main carrier of emotion-related speech characteristics and timbre accounts for the essential characteristics for speaker identification. Zero-shot emotion transfer, meaning that speech of target speakers are not seen in model training, is also realized with iEmoTTS. Extensive experiments of subjective evaluation have been carried out. The results demonstrate the effectiveness of iEmoTTS as compared with other recently proposed systems of cross-speaker emotion transfer. It is shown that iEmoTTS can produce speech with designated emotion type and controllable emotion intensity. With appropriate information bottleneck capacity, iEmoTTS is able to effectively transfer emotion information to a new speaker. Audio samples are publicly available\footnote{https://patrick-g-zhang.github.io/iemotts/}.
Abstract:Recently, leveraging BERT pre-training to improve the phoneme encoder in text to speech (TTS) has drawn increasing attention. However, the works apply pre-training with character-based units to enhance the TTS phoneme encoder, which is inconsistent with the TTS fine-tuning that takes phonemes as input. Pre-training only with phonemes as input can alleviate the input mismatch but lack the ability to model rich representations and semantic information due to limited phoneme vocabulary. In this paper, we propose MixedPhoneme BERT, a novel variant of the BERT model that uses mixed phoneme and sup-phoneme representations to enhance the learning capability. Specifically, we merge the adjacent phonemes into sup-phonemes and combine the phoneme sequence and the merged sup-phoneme sequence as the model input, which can enhance the model capacity to learn rich contextual representations. Experiment results demonstrate that our proposed Mixed-Phoneme BERT significantly improves the TTS performance with 0.30 CMOS gain compared with the FastSpeech 2 baseline. The Mixed-Phoneme BERT achieves 3x inference speedup and similar voice quality to the previous TTS pre-trained model PnG BERT
Abstract:This study aims at designing an environment-aware text-to-speech (TTS) system that can generate speech to suit specific acoustic environments. It is also motivated by the desire to leverage massive data of speech audio from heterogeneous sources in TTS system development. The key idea is to model the acoustic environment in speech audio as a factor of data variability and incorporate it as a condition in the process of neural network based speech synthesis. Two embedding extractors are trained with two purposely constructed datasets for characterization and disentanglement of speaker and environment factors in speech. A neural network model is trained to generate speech from extracted speaker and environment embeddings. Objective and subjective evaluation results demonstrate that the proposed TTS system is able to effectively disentangle speaker and environment factors and synthesize speech audio that carries designated speaker characteristics and environment attribute. Audio samples are available online for demonstration https://daxintan-cuhk.github.io/Environment-Aware-TTS/ .
Abstract:In the development of neural text-to-speech systems, model pre-training with a large amount of non-target speakers' data is a common approach. However, in terms of ultimately achieved system performance for target speaker(s), the actual benefits of model pre-training are uncertain and unstable, depending very much on the quantity and text content of training data. This study aims to understand better why and how model pre-training can positively contribute to TTS system performance. It is postulated that the pre-training process plays a critical role in learning text-related variation in speech, while further training with the target speaker's data aims to capture the speaker-related variation. Different test sets are created with varying degrees of similarity to target speaker data in terms of text content. Experiments show that leveraging a speaker-independent TTS trained on speech data with diverse text content can improve the target speaker TTS on domain-mismatched text. We also attempt to reduce the amount of pre-training data for a new text domain and improve the data and computational efficiency. It is found that the TTS system could achieve comparable performance when the pre-training data is reduced to 1/8 of its original size.
Abstract:This paper describes a novel design of a neural network-based speech generation model for learning prosodic representation.The problem of representation learning is formulated according to the information bottleneck (IB) principle. A modified VQ-VAE quantized layer is incorporated in the speech generation model to control the IB capacity and adjust the balance between reconstruction power and disentangle capability of the learned representation. The proposed model is able to learn word-level prosodic representations from speech data. With an optimized IB capacity, the learned representations not only are adequate to reconstruct the original speech but also can be used to transfer the prosody onto different textual content. Extensive results of the objective and subjective evaluation are presented to demonstrate the effect of IB capacity control, the effectiveness, and potential usage of the learned prosodic representation in controllable neural speech generation.
Abstract:While recent text to speech (TTS) models perform very well in synthesizing reading-style (e.g., audiobook) speech, it is still challenging to synthesize spontaneous-style speech (e.g., podcast or conversation), mainly because of two reasons: 1) the lack of training data for spontaneous speech; 2) the difficulty in modeling the filled pauses (um and uh) and diverse rhythms in spontaneous speech. In this paper, we develop AdaSpeech 3, an adaptive TTS system that fine-tunes a well-trained reading-style TTS model for spontaneous-style speech. Specifically, 1) to insert filled pauses (FP) in the text sequence appropriately, we introduce an FP predictor to the TTS model; 2) to model the varying rhythms, we introduce a duration predictor based on mixture of experts (MoE), which contains three experts responsible for the generation of fast, medium and slow speech respectively, and fine-tune it as well as the pitch predictor for rhythm adaptation; 3) to adapt to other speaker timbre, we fine-tune some parameters in the decoder with few speech data. To address the challenge of lack of training data, we mine a spontaneous speech dataset to support our research this work and facilitate future research on spontaneous TTS. Experiments show that AdaSpeech 3 synthesizes speech with natural FP and rhythms in spontaneous styles, and achieves much better MOS and SMOS scores than previous adaptive TTS systems.