Abstract:Large Language Models (LLMs) have recently garnered significant attention, primarily for their capabilities in text-based interactions. However, natural human interaction often relies on speech, necessitating a shift towards voice-based models. A straightforward approach to achieve this involves a pipeline of ``Automatic Speech Recognition (ASR) + LLM + Text-to-Speech (TTS)", where input speech is transcribed to text, processed by an LLM, and then converted back to speech. Despite being straightforward, this method suffers from inherent limitations, such as information loss during modality conversion and error accumulation across the three stages. To address these issues, Speech Language Models (SpeechLMs) -- end-to-end models that generate speech without converting from text -- have emerged as a promising alternative. This survey paper provides the first comprehensive overview of recent methodologies for constructing SpeechLMs, detailing the key components of their architecture and the various training recipes integral to their development. Additionally, we systematically survey the various capabilities of SpeechLMs, categorize the evaluation metrics for SpeechLMs, and discuss the challenges and future research directions in this rapidly evolving field.
Abstract:Loopable music generation systems enable diverse applications, but they often lack controllability and customization capabilities. We argue that enhancing controllability can enrich these models, with emotional expression being a crucial aspect for both creators and listeners. Hence, building upon LooperGP, a loopable tablature generation model, this paper explores endowing systems with control over conveyed emotions. To enable such conditional generation, we propose integrating musical knowledge by utilizing multi-granular semantic and musical features during model training and inference. Specifically, we incorporate song-level features (Emotion Labels, Tempo, and Mode) and bar-level features (Tonal Tension) together to guide emotional expression. Through algorithmic and human evaluations, we demonstrate the approach's effectiveness in producing music conveying two contrasting target emotions, happiness and sadness. An ablation study is also conducted to clarify the contributing factors behind our approach's results.
Abstract:The disease is a core concept in the medical field, and the task of normalizing disease names is the basis of all disease-related tasks. However, due to the multi-axis and multi-grain nature of disease names, incorrect information is often injected and harms the performance when using general text data augmentation techniques. To address the above problem, we propose a set of data augmentation techniques that work together as an augmented training task for disease normalization. Our data augmentation methods are based on both the clinical disease corpus and standard disease corpus derived from ICD-10 coding. Extensive experiments are conducted to show the effectiveness of our proposed methods. The results demonstrate that our methods can have up to 3\% performance gain compared to non-augmented counterparts, and they can work even better on smaller datasets.