Abstract:Guitar tablatures enrich the structure of traditional music notation by assigning each note to a string and fret of a guitar in a particular tuning, indicating precisely where to play the note on the instrument. The problem of generating tablature from a symbolic music representation involves inferring this string and fret assignment per note across an entire composition or performance. On the guitar, multiple string-fret assignments are possible for most pitches, which leads to a large combinatorial space that prevents exhaustive search approaches. Most modern methods use constraint-based dynamic programming to minimize some cost function (e.g.\ hand position movement). In this work, we introduce a novel deep learning solution to symbolic guitar tablature estimation. We train an encoder-decoder Transformer model in a masked language modeling paradigm to assign notes to strings. The model is first pre-trained on DadaGP, a dataset of over 25K tablatures, and then fine-tuned on a curated set of professionally transcribed guitar performances. Given the subjective nature of assessing tablature quality, we conduct a user study amongst guitarists, wherein we ask participants to rate the playability of multiple versions of tablature for the same four-bar excerpt. The results indicate our system significantly outperforms competing algorithms.
Abstract:Generative AI models have recently blossomed, significantly impacting artistic and musical traditions. Research investigating how humans interact with and deem these models is therefore crucial. Through a listening and reflection study, we explore participants' perspectives on AI- vs human-generated progressive metal, in symbolic format, using rock music as a control group. AI-generated examples were produced by ProgGP, a Transformer-based model. We propose a mixed methods approach to assess the effects of generation type (human vs. AI), genre (progressive metal vs. rock), and curation process (random vs. cherry-picked). This combines quantitative feedback on genre congruence, preference, creativity, consistency, playability, humanness, and repeatability, and qualitative feedback to provide insights into listeners' experiences. A total of 32 progressive metal fans completed the study. Our findings validate the use of fine-tuning to achieve genre-specific specialization in AI music generation, as listeners could distinguish between AI-generated rock and progressive metal. Despite some AI-generated excerpts receiving similar ratings to human music, listeners exhibited a preference for human compositions. Thematic analysis identified key features for genre and AI vs. human distinctions. Finally, we consider the ethical implications of our work in promoting musical data diversity within MIR research by focusing on an under-explored genre.
Abstract:Loopable music generation systems enable diverse applications, but they often lack controllability and customization capabilities. We argue that enhancing controllability can enrich these models, with emotional expression being a crucial aspect for both creators and listeners. Hence, building upon LooperGP, a loopable tablature generation model, this paper explores endowing systems with control over conveyed emotions. To enable such conditional generation, we propose integrating musical knowledge by utilizing multi-granular semantic and musical features during model training and inference. Specifically, we incorporate song-level features (Emotion Labels, Tempo, and Mode) and bar-level features (Tonal Tension) together to guide emotional expression. Through algorithmic and human evaluations, we demonstrate the approach's effectiveness in producing music conveying two contrasting target emotions, happiness and sadness. An ablation study is also conducted to clarify the contributing factors behind our approach's results.
Abstract:GuitarPro format tablatures are a type of digital music notation that encapsulates information about guitar playing techniques and fingerings. We introduce ShredGP, a GuitarPro tablature generative Transformer-based model conditioned to imitate the style of four distinct iconic electric guitarists. In order to assess the idiosyncrasies of each guitar player, we adopt a computational musicology methodology by analysing features computed from the tokens yielded by the DadaGP encoding scheme. Statistical analyses of the features evidence significant differences between the four guitarists. We trained two variants of the ShredGP model, one using a multi-instrument corpus, the other using solo guitar data. We present a BERT-based model for guitar player classification and use it to evaluate the generated examples. Overall, results from the classifier show that ShredGP is able to generate content congruent with the style of the targeted guitar player. Finally, we reflect on prospective applications for ShredGP for human-AI music interaction.
Abstract:Recent work in the field of symbolic music generation has shown value in using a tokenization based on the GuitarPro format, a symbolic representation supporting guitar expressive attributes, as an input and output representation. We extend this work by fine-tuning a pre-trained Transformer model on ProgGP, a custom dataset of 173 progressive metal songs, for the purposes of creating compositions from that genre through a human-AI partnership. Our model is able to generate multiple guitar, bass guitar, drums, piano and orchestral parts. We examine the validity of the generated music using a mixed methods approach by combining quantitative analyses following a computational musicology paradigm and qualitative analyses following a practice-based research paradigm. Finally, we demonstrate the value of the model by using it as a tool to create a progressive metal song, fully produced and mixed by a human metal producer based on AI-generated music.
Abstract:Subword tokenization has been widely successful in text-based natural language processing (NLP) tasks with Transformer-based models. As Transformer models become increasingly popular in symbolic music-related studies, it is imperative to investigate the efficacy of subword tokenization in the symbolic music domain. In this paper, we explore subword tokenization techniques, such as byte-pair encoding (BPE), in symbolic music generation and its impact on the overall structure of generated songs. Our experiments are based on three types of MIDI datasets: single track-melody only, multi-track with a single instrument, and multi-track and multi-instrument. We apply subword tokenization on post-musical tokenization schemes and find that it enables the generation of longer songs at the same time and improves the overall structure of the generated music in terms of objective metrics like structure indicator (SI), Pitch Class Entropy, etc. We also compare two subword tokenization methods, BPE and Unigram, and observe that both methods lead to consistent improvements. Our study suggests that subword tokenization is a promising technique for symbolic music generation and may have broader implications for music composition, particularly in cases involving complex data such as multi-track songs.
Abstract:Despite their impressive offline results, deep learning models for symbolic music generation are not widely used in live performances due to a deficit of musically meaningful control parameters and a lack of structured musical form in their outputs. To address these issues we introduce LooperGP, a method for steering a Transformer-XL model towards generating loopable musical phrases of a specified number of bars and time signature, enabling a tool for live coding performances. We show that by training LooperGP on a dataset of 93,681 musical loops extracted from the DadaGP dataset, we are able to steer its generative output towards generating 3x as many loopable phrases as our baseline. In a subjective listening test conducted by 31 participants, LooperGP loops achieved positive median ratings in originality, musical coherence and loop smoothness, demonstrating its potential as a performance tool.
Abstract:Recently, symbolic music generation with deep learning techniques has witnessed steady improvements. Most works on this topic focus on MIDI representations, but less attention has been paid to symbolic music generation using guitar tablatures (tabs) which can be used to encode multiple instruments. Tabs include information on expressive techniques and fingerings for fretted string instruments in addition to rhythm and pitch. In this work, we use the DadaGP dataset for guitar tab music generation, a corpus of over 26k songs in GuitarPro and token formats. We introduce methods to condition a Transformer-XL deep learning model to generate guitar tabs (GTR-CTRL) based on desired instrumentation (inst-CTRL) and genre (genre-CTRL). Special control tokens are appended at the beginning of each song in the training corpus. We assess the performance of the model with and without conditioning. We propose instrument presence metrics to assess the inst-CTRL model's response to a given instrumentation prompt. We trained a BERT model for downstream genre classification and used it to assess the results obtained with the genre-CTRL model. Statistical analyses evidence significant differences between the conditioned and unconditioned models. Overall, results indicate that the GTR-CTRL methods provide more flexibility and control for guitar-focused symbolic music generation than an unconditioned model.
Abstract:Originating in the Renaissance and burgeoning in the digital era, tablatures are a commonly used music notation system which provides explicit representations of instrument fingerings rather than pitches. GuitarPro has established itself as a widely used tablature format and software enabling musicians to edit and share songs for musical practice, learning, and composition. In this work, we present DadaGP, a new symbolic music dataset comprising 26,181 song scores in the GuitarPro format covering 739 musical genres, along with an accompanying tokenized format well-suited for generative sequence models such as the Transformer. The tokenized format is inspired by event-based MIDI encodings, often used in symbolic music generation models. The dataset is released with an encoder/decoder which converts GuitarPro files to tokens and back. We present results of a use case in which DadaGP is used to train a Transformer-based model to generate new songs in GuitarPro format. We discuss other relevant use cases for the dataset (guitar-bass transcription, music style transfer and artist/genre classification) as well as ethical implications. DadaGP opens up the possibility to train GuitarPro score generators, fine-tune models on custom data, create new styles of music, AI-powered songwriting apps, and human-AI improvisation.