Abstract:With the rise of artificial intelligence (AI), there has been increasing interest in human-AI co-creation in a variety of artistic domains including music as AI-driven systems are frequently able to generate human-competitive artifacts. Now, the implications of such systems for musical practice are being investigated. We report on a thorough evaluation of the user adoption of the Multi-Track Music Machine (MMM) as a co-creative AI tool for music composers. To do this, we integrate MMM into Cubase, a popular Digital Audio Workstation (DAW) by Steinberg, by producing a "1-parameter" plugin interface named MMM-Cubase (MMM-C), which enables human-AI co-composition. We contribute a methodological assemblage as a 3-part mixed method study measuring usability, user experience and technology acceptance of the system across two groups of expert-level composers: hobbyists and professionals. Results show positive usability and acceptance scores. Users report experiences of novelty, surprise and ease of use from using the system, and limitations on controllability and predictability of the interface when generating music. Findings indicate no significant difference between the two user groups.
Abstract:With the rise of artificial intelligence in recent years, there has been a rapid increase in its application towards creative domains, including music. There exist many systems built that apply machine learning approaches to the problem of computer-assisted music composition (CAC). Calliope is a web application that assists users in performing a variety of multi-track composition tasks in the symbolic domain. The user can upload (Musical Instrument Digital Interface) MIDI files, visualize and edit MIDI tracks, and generate partial (via bar in-filling) or complete multi-track content using the Multi-Track Music Machine (MMM). Generation of new MIDI excerpts can be done in batch and can be combined with active playback listening for an enhanced assisted-composition workflow. The user can export generated MIDI materials or directly stream MIDI playback from the system to their favorite Digital Audio Workstation (DAW). We present a demonstration of the system, its features, generative parameters and describe the co-creative workflows that it affords.
Abstract:With the recent developments in machine intelligence and web technologies, new generative music systems are being explored for assisted composition using machine learning techniques on the web. Such systems are built for various tasks such as melodic, harmonic or rhythm generation, music interpolation, continuation and style imitation. In this paper, we introduce Apollo, an interactive music application for generating symbolic phrases of conventional western music using corpus-based style imitation techniques. In addition to enabling the construction and management of symbolic musical corpora, the system makes it possible for music artists and researchers to generate new musical phrases in the style of the proposed corpus. The system is available as a desktop application. The generated symbolic music materials, encoded in the MIDI format, can be exported or streamed for various purposes including using them as seed material for musical projects. We present the system design, implementation details, discuss and conclude with future work for the system.
Abstract:The Musical Instrument Digital Interface (MIDI), introduced in 1983, revolutionized music production by allowing computers and instruments to communicate efficiently. MIDI files encode musical instructions compactly, facilitating convenient music sharing. They benefit Music Information Retrieval (MIR), aiding in research on music understanding, computational musicology, and generative music. The GigaMIDI dataset contains over 1.4 million unique MIDI files, encompassing 1.8 billion MIDI note events and over 5.3 million MIDI tracks. GigaMIDI is currently the largest collection of symbolic music in MIDI format available for research purposes under fair dealing. Distinguishing between non-expressive and expressive MIDI tracks is challenging, as MIDI files do not inherently make this distinction. To address this issue, we introduce a set of innovative heuristics for detecting expressive music performance. These include the Distinctive Note Velocity Ratio (DNVR) heuristic, which analyzes MIDI note velocity; the Distinctive Note Onset Deviation Ratio (DNODR) heuristic, which examines deviations in note onset times; and the Note Onset Median Metric Level (NOMML) heuristic, which evaluates onset positions relative to metric levels. Our evaluation demonstrates these heuristics effectively differentiate between non-expressive and expressive MIDI tracks. Furthermore, after evaluation, we create the most substantial expressive MIDI dataset, employing our heuristic, NOMML. This curated iteration of GigaMIDI encompasses expressively-performed instrument tracks detected by NOMML, containing all General MIDI instruments, constituting 31% of the GigaMIDI dataset, totalling 1,655,649 tracks.
Abstract:We present and release MIDI-GPT, a generative system based on the Transformer architecture that is designed for computer-assisted music composition workflows. MIDI-GPT supports the infilling of musical material at the track and bar level, and can condition generation on attributes including: instrument type, musical style, note density, polyphony level, and note duration. In order to integrate these features, we employ an alternative representation for musical material, creating a time-ordered sequence of musical events for each track and concatenating several tracks into a single sequence, rather than using a single time-ordered sequence where the musical events corresponding to different tracks are interleaved. We also propose a variation of our representation allowing for expressiveness. We present experimental results that demonstrate that MIDI-GPT is able to consistently avoid duplicating the musical material it was trained on, generate music that is stylistically similar to the training dataset, and that attribute controls allow enforcing various constraints on the generated material. We also outline several real-world applications of MIDI-GPT, including collaborations with industry partners that explore the integration and evaluation of MIDI-GPT into commercial products, as well as several artistic works produced using it.
Abstract:We propose the Multi-Track Music Machine (MMM), a generative system based on the Transformer architecture that is capable of generating multi-track music. In contrast to previous work, which represents musical material as a single time-ordered sequence, where the musical events corresponding to different tracks are interleaved, we create a time-ordered sequence of musical events for each track and concatenate several tracks into a single sequence. This takes advantage of the Transformer's attention-mechanism, which can adeptly handle long-term dependencies. We explore how various representations can offer the user a high degree of control at generation time, providing an interactive demo that accommodates track-level and bar-level inpainting, and offers control over track instrumentation and note density.