Abstract:We present and release MIDI-GPT, a generative system based on the Transformer architecture that is designed for computer-assisted music composition workflows. MIDI-GPT supports the infilling of musical material at the track and bar level, and can condition generation on attributes including: instrument type, musical style, note density, polyphony level, and note duration. In order to integrate these features, we employ an alternative representation for musical material, creating a time-ordered sequence of musical events for each track and concatenating several tracks into a single sequence, rather than using a single time-ordered sequence where the musical events corresponding to different tracks are interleaved. We also propose a variation of our representation allowing for expressiveness. We present experimental results that demonstrate that MIDI-GPT is able to consistently avoid duplicating the musical material it was trained on, generate music that is stylistically similar to the training dataset, and that attribute controls allow enforcing various constraints on the generated material. We also outline several real-world applications of MIDI-GPT, including collaborations with industry partners that explore the integration and evaluation of MIDI-GPT into commercial products, as well as several artistic works produced using it.
Abstract:Effective music mixing requires technical and creative finesse, but clear communication with the client is crucial. The mixing engineer must grasp the client's expectations, and preferences, and collaborate to achieve the desired sound. The tacit agreement for the desired sound of the mix is often established using guides like reference songs and demo mixes exchanged between the artist and the engineer and sometimes verbalised using semantic terms. This paper presents the findings of a two-phased exploratory study aimed at understanding how professional mixing engineers interact with clients and use their feedback to guide the mixing process. For phase one, semi-structured interviews were conducted with five mixing engineers with the aim of gathering insights about their communication strategies, creative processes, and decision-making criteria. Based on the inferences from these interviews, an online questionnaire was designed and administered to a larger group of 22 mixing engineers during the second phase. The results of this study shed light on the importance of collaboration, empathy, and intention in the mixing process, and can inform the development of smart multi-track mixing systems that better support these practices. By highlighting the significance of these findings, this paper contributes to the growing body of research on the collaborative nature of music production and provides actionable recommendations for the design and implementation of innovative mixing tools.
Abstract:The integration of artificial intelligence (AI) technology in the music industry is driving a significant change in the way music is being composed, produced and mixed. This study investigates the current state of AI in the mixing workflows and its adoption by different user groups. Through semi-structured interviews, a questionnaire-based study, and analyzing web forums, the study confirms three user groups comprising amateurs, pro-ams, and professionals. Our findings show that while AI mixing tools can simplify the process and provide decent results for amateurs, pro-ams seek precise control and customization options, while professionals desire control and customization options in addition to assistive and collaborative technologies. The study provides strategies for designing effective AI mixing tools for different user groups and outlines future directions.