NTU
Abstract:Electric guitar tone modeling typically focuses on the non-linear transformation from clean to amplifier-rendered audio. Traditional methods rely on one-to-one mappings, incorporating device parameters into neural models to replicate specific amplifiers. However, these methods are limited by the need for specific training data. In this paper, we adapt a model based on the previous work, which leverages a tone embedding encoder and a feature wise linear modulation (FiLM) condition method. In this work, we altered conditioning method using a hypernetwork-based gated convolutional network (GCN) to generate audio that blends clean input with the tone characteristics of reference audio. By extending the training data to cover a wider variety of amplifier tones, our model is able to capture a broader range of tones. Additionally, we developed a real-time plugin to demonstrate the system's practical application, allowing users to experience its performance interactively. Our results indicate that the proposed system achieves superior tone modeling versatility compared to traditional methods.
Abstract:Western music is often characterized by a homophonic texture, in which the musical content can be organized into a melody and an accompaniment. In orchestral music, in particular, the composer can select specific characteristics for each instrument's part within the accompaniment, while also needing to adapt the melody to suit the capabilities of the instruments performing it. In this work, we propose METEOR, a model for Melody-aware Texture-controllable Orchestral music generation. This model performs symbolic multi-track music style transfer with a focus on melodic fidelity. We allow bar- and track-level controllability of the accompaniment with various textural attributes while keeping a homophonic texture. We show that the model can achieve controllability performances similar to strong baselines while greatly improve melodic fidelity.
Abstract:Neural network models for guitar amplifier emulation, while being effective, often demand high computational cost and lack interpretability. Drawing ideas from physical amplifier design, this paper aims to address these issues with a new differentiable digital signal processing (DDSP)-based model, called ``DDSP guitar amp,'' that models the four components of a guitar amp (i.e., preamp, tone stack, power amp, and output transformer) using specific DSP-inspired designs. With a set of time- and frequency-domain metrics, we demonstrate that DDSP guitar amp achieves performance comparable with that of black-box baselines while requiring less than 10\% of the computational operations per audio sample, thereby holding greater potential for usages in real-time applications.
Abstract:We present PyNeuralFx, an open-source Python toolkit designed for research on neural audio effect modeling. The toolkit provides an intuitive framework and offers a comprehensive suite of features, including standardized implementation of well-established model architectures, loss functions, and easy-to-use visualization tools. As such, it helps promote reproducibility for research on neural audio effect modeling, and enable in-depth performance comparison of different models, offering insight into the behavior and operational characteristics of models through DSP methodology. The toolkit can be found at https://github.com/ytsrt66589/pyneuralfx.
Abstract:Recurrent neural networks (RNNs) have demonstrated impressive results for virtual analog modeling of audio effects. These networks process time-domain audio signals using a series of matrix multiplication and nonlinear activation functions to emulate the behavior of the target device accurately. To additionally model the effect of the knobs for an RNN-based model, existing approaches integrate control parameters by concatenating them channel-wisely with some intermediate representation of the input signal. While this method is parameter-efficient, there is room to further improve the quality of generated audio because the concatenation-based conditioning method has limited capacity in modulating signals. In this paper, we propose three novel conditioning mechanisms for RNNs, tailored for black-box virtual analog modeling. These advanced conditioning mechanisms modulate the model based on control parameters, yielding superior results to existing RNN- and CNN-based architectures across various evaluation metrics.
Abstract:Piano cover generation aims to create a piano cover from a pop song. Existing approaches mainly employ supervised learning and the training demands strongly-aligned and paired song-to-piano data, which is built by remapping piano notes to song audio. This would, however, result in the loss of piano information and accordingly cause inconsistencies between the original and remapped piano versions. To overcome this limitation, we propose a transfer learning approach that pre-trains our model on piano-only data and fine-tunes it on weakly-aligned paired data constructed without note remapping. During pre-training, to guide the model to learn piano composition concepts instead of merely transcribing audio, we use an existing lead sheet transcription model as the encoder to extract high-level features from the piano recordings. The pre-trained model is then fine-tuned on the paired song-piano data to transfer the learned composition knowledge to the pop song domain. Our evaluation shows that this training strategy enables our model, named PiCoGen2, to attain high-quality results, outperforming baselines on both objective and subjective metrics across five pop genres.
Abstract:Managing the emotional aspect remains a challenge in automatic music generation. Prior works aim to learn various emotions at once, leading to inadequate modeling. This paper explores the disentanglement of emotions in piano performance generation through a two-stage framework. The first stage focuses on valence modeling of lead sheet, and the second stage addresses arousal modeling by introducing performance-level attributes. To further capture features that shape valence, an aspect less explored by previous approaches, we introduce a novel functional representation of symbolic music. This representation aims to capture the emotional impact of major-minor tonality, as well as the interactions among notes, chords, and key signatures. Objective and subjective experiments validate the effectiveness of our framework in both emotional valence and arousal modeling. We further leverage our framework in a novel application of emotional controls, showing a broad potential in emotion-driven music generation.
Abstract:Cover song generation stands out as a popular way of music making in the music-creative community. In this study, we introduce Piano Cover Generation (PiCoGen), a two-stage approach for automatic cover song generation that transcribes the melody line and chord progression of a song given its audio recording, and then uses the resulting lead sheet as the condition to generate a piano cover in the symbolic domain. This approach is advantageous in that it does not required paired data of covers and their original songs for training. Compared to an existing approach that demands such paired data, our evaluation shows that PiCoGen demonstrates competitive or even superior performance across songs of different musical genres.
Abstract:Emotion-driven melody harmonization aims to generate diverse harmonies for a single melody to convey desired emotions. Previous research found it hard to alter the perceived emotional valence of lead sheets only by harmonizing the same melody with different chords, which may be attributed to the constraints imposed by the melody itself and the limitation of existing music representation. In this paper, we propose a novel functional representation for symbolic music. This new method takes musical keys into account, recognizing their significant role in shaping music's emotional character through major-minor tonality. It also allows for melodic variation with respect to keys and addresses the problem of data scarcity for better emotion modeling. A Transformer is employed to harmonize key-adaptable melodies, allowing for keys determined in rule-based or model-based manner. Experimental results confirm the effectiveness of our new representation in generating key-aware harmonies, with objective and subjective evaluations affirming the potential of our approach to convey specific valence for versatile melody.
Abstract:Text-to-music models allow users to generate nearly realistic musical audio with textual commands. However, editing music audios remains challenging due to the conflicting desiderata of performing fine-grained alterations on the audio while maintaining a simple user interface. To address this challenge, we propose Audio Prompt Adapter (or AP-Adapter), a lightweight addition to pretrained text-to-music models. We utilize AudioMAE to extract features from the input audio, and construct attention-based adapters to feedthese features into the internal layers of AudioLDM2, a diffusion-based text-to-music model. With 22M trainable parameters, AP-Adapter empowers users to harness both global (e.g., genre and timbre) and local (e.g., melody) aspects of music, using the original audio and a short text as inputs. Through objective and subjective studies, we evaluate AP-Adapter on three tasks: timbre transfer, genre transfer, and accompaniment generation. Additionally, we demonstrate its effectiveness on out-of-domain audios containing unseen instruments during training.