Abstract:The goal of music style transfer is to convert a music performance by one instrument into another while keeping the musical contents unchanged. In this paper, we investigate another style transfer scenario called ``failed-music style transfer''. Unlike the usual music style transfer where the content remains the same and only the instrumental characteristics are changed, this scenario seeks to transfer the music from the source instrument to the target instrument which is deliberately performed off-pitch. Our work attempts to transfer normally played music into off-pitch recorder music, which we call ``failed-style recorder'', and study the results of the conversion. To carry out this work, we have also proposed a dataset of failed-style recorders for this task, called ``FR109 Dataset''. Such an experiment explores the music style transfer task in a more expressive setting, as the generated audio should sound like an ``off-pitch recorder'' while maintaining a certain degree of naturalness.
Abstract:Current approaches in 3D human pose estimation primarily focus on regressing 3D joint locations, often neglecting critical physical constraints such as bone length consistency and body symmetry. This work introduces a recurrent neural network architecture designed to capture holistic information across entire video sequences, enabling accurate prediction of bone lengths. To enhance training effectiveness, we propose a novel augmentation strategy using synthetic bone lengths that adhere to physical constraints. Moreover, we present a bone length adjustment method that preserves bone orientations while substituting bone lengths with predicted values. Our results demonstrate that existing 3D human pose estimation models can be significantly enhanced through this adjustment process. Furthermore, we fine-tune human pose estimation models using inferred bone lengths, observing notable improvements. Our bone length prediction model surpasses the previous best results, and our adjustment and fine-tuning method enhance performance across several metrics on the Human3.6M dataset.
Abstract:Electric guitar tone modeling typically focuses on the non-linear transformation from clean to amplifier-rendered audio. Traditional methods rely on one-to-one mappings, incorporating device parameters into neural models to replicate specific amplifiers. However, these methods are limited by the need for specific training data. In this paper, we adapt a model based on the previous work, which leverages a tone embedding encoder and a feature wise linear modulation (FiLM) condition method. In this work, we altered conditioning method using a hypernetwork-based gated convolutional network (GCN) to generate audio that blends clean input with the tone characteristics of reference audio. By extending the training data to cover a wider variety of amplifier tones, our model is able to capture a broader range of tones. Additionally, we developed a real-time plugin to demonstrate the system's practical application, allowing users to experience its performance interactively. Our results indicate that the proposed system achieves superior tone modeling versatility compared to traditional methods.
Abstract:Mainstream zero-shot TTS production systems like Voicebox and Seed-TTS achieve human parity speech by leveraging Flow-matching and Diffusion models, respectively. Unfortunately, human-level audio synthesis leads to identity misuse and information security issues. Currently, many antispoofing models have been developed against deepfake audio. However, the efficacy of current state-of-the-art anti-spoofing models in countering audio synthesized by diffusion and flowmatching based TTS systems remains unknown. In this paper, we proposed the Diffusion and Flow-matching based Audio Deepfake (DFADD) dataset. The DFADD dataset collected the deepfake audio based on advanced diffusion and flowmatching TTS models. Additionally, we reveal that current anti-spoofing models lack sufficient robustness against highly human-like audio generated by diffusion and flow-matching TTS systems. The proposed DFADD dataset addresses this gap and provides a valuable resource for developing more resilient anti-spoofing models.
Abstract:Replicating analog device circuits through neural audio effect modeling has garnered increasing interest in recent years. Existing work has predominantly focused on a one-to-one emulation strategy, modeling specific devices individually. In this paper, we tackle the less-explored scenario of one-to-many emulation, utilizing conditioning mechanisms to emulate multiple guitar amplifiers through a single neural model. For condition representation, we use contrastive learning to build a tone embedding encoder that extracts style-related features of various amplifiers, leveraging a dataset of comprehensive amplifier settings. Targeting zero-shot application scenarios, we also examine various strategies for tone embedding representation, evaluating referenced tone embedding against two retrieval-based embedding methods for amplifiers unseen in the training time. Our findings showcase the efficacy and potential of the proposed methods in achieving versatile one-to-many amplifier modeling, contributing a foundational step towards zero-shot audio modeling applications.
Abstract:Music source separation aims to separate polyphonic music into different types of sources. Most existing methods focus on enhancing the quality of separated results by using a larger model structure, rendering them unsuitable for deployment on edge devices. Moreover, these methods may produce low-quality output when the input duration is short, making them impractical for real-time applications. Therefore, the goal of this paper is to enhance a lightweight model, MMDenstNet, to strike a balance between separation quality and latency for real-time applications. Different directions of improvement are explored or proposed in this paper, including complex ideal ratio mask, self-attention, band-merge-split method, and feature look back. Source-to-distortion ratio, real-time factor, and optimal latency are employed to evaluate the performance. To align with our application requirements, the evaluation process in this paper focuses on the separation performance of the accompaniment part. Experimental results demonstrate that our improvement achieves low real-time factor and optimal latency while maintaining acceptable separation quality.
Abstract:Recent years have seen increasing interest in applying deep learning methods to the modeling of guitar amplifiers or effect pedals. Existing methods are mainly based on the supervised approach, requiring temporally-aligned data pairs of unprocessed and rendered audio. However, this approach does not scale well, due to the complicated process involved in creating the data pairs. A very recent work done by Wright et al. has explored the potential of leveraging unpaired data for training, using a generative adversarial network (GAN)-based framework. This paper extends their work by using more advanced discriminators in the GAN, and using more unpaired data for training. Specifically, drawing inspiration from recent advancements in neural vocoders, we employ in our GAN-based model for guitar amplifier modeling two sets of discriminators, one based on multi-scale discriminator (MSD) and the other multi-period discriminator (MPD). Moreover, we experiment with adding unprocessed audio signals that do not have the corresponding rendered audio of a target tone to the training data, to see how much the GAN model benefits from the unpaired data. Our experiments show that the proposed two extensions contribute to the modeling of both low-gain and high-gain guitar amplifiers.
Abstract:Automatic Speaker Verification (ASV), increasingly used in security-critical applications, faces vulnerabilities from rising adversarial attacks, with few effective defenses available. In this paper, we propose a neural codec-based adversarial sample detection method for ASV. The approach leverages the codec's ability to discard redundant perturbations and retain essential information. Specifically, we distinguish between genuine and adversarial samples by comparing ASV score differences between original and re-synthesized audio (by codec models). This comprehensive study explores all open-source neural codecs and their variant models for experiments. The Descript-audio-codec model stands out by delivering the highest detection rate among 15 neural codecs and surpassing seven prior state-of-the-art (SOTA) detection methods. Note that, our single-model method even outperforms a SOTA ensemble method by a large margin.
Abstract:Detecting singing voice deepfakes, or SingFake, involves determining the authenticity and copyright of a singing voice. Existing models for speech deepfake detection have struggled to adapt to unseen attacks in this unique singing voice domain of human vocalization. To bridge the gap, we present a groundbreaking SingGraph model. The model synergizes the capabilities of the MERT acoustic music understanding model for pitch and rhythm analysis with the wav2vec2.0 model for linguistic analysis of lyrics. Additionally, we advocate for using RawBoost and beat matching techniques grounded in music domain knowledge for singing voice augmentation, thereby enhancing SingFake detection performance. Our proposed method achieves new state-of-the-art (SOTA) results within the SingFake dataset, surpassing the previous SOTA model across three distinct scenarios: it improves EER relatively for seen singers by 13.2%, for unseen singers by 24.3%, and unseen singers using different codecs by 37.1%.
Abstract:Speech emotion recognition (SER) is a pivotal technology for human-computer interaction systems. However, 80.77% of SER papers yield results that cannot be reproduced. We develop EMO-SUPERB, short for EMOtion Speech Universal PERformance Benchmark, which aims to enhance open-source initiatives for SER. EMO-SUPERB includes a user-friendly codebase to leverage 15 state-of-the-art speech self-supervised learning models (SSLMs) for exhaustive evaluation across six open-source SER datasets. EMO-SUPERB streamlines result sharing via an online leaderboard, fostering collaboration within a community-driven benchmark and thereby enhancing the development of SER. On average, 2.58% of annotations are annotated using natural language. SER relies on classification models and is unable to process natural languages, leading to the discarding of these valuable annotations. We prompt ChatGPT to mimic annotators, comprehend natural language annotations, and subsequently re-label the data. By utilizing labels generated by ChatGPT, we consistently achieve an average relative gain of 3.08% across all settings.