Abstract:With the rapid advancement of codec-based speech generation (CoSG) systems, creating fake speech that mimics an individual's identity and spreads misinformation has become remarkably easy. Addressing the risks posed by such deepfake speech has attracted significant attention. However, most existing studies focus on detecting fake data generated by traditional speech generation models. Research on detecting fake speech generated by CoSG systems remains limited and largely unexplored. In this paper, we introduce CodecFake-Omni, a large-scale dataset specifically designed to advance the study of neural codec-based deepfake speech (CodecFake) detection and promote progress within the anti-spoofing community. To the best of our knowledge, CodecFake-Omni is the largest dataset of its kind till writing this paper, encompassing the most diverse range of codec architectures. The training set is generated through re-synthesis using nearly all publicly available open-source 31 neural audio codec models across 21 different codec families (one codec family with different configurations will result in multiple different codec models). The evaluation set includes web-sourced data collected from websites generated by 17 advanced CoSG models with eight codec families. Using this large-scale dataset, we reaffirm our previous findings that anti-spoofing models trained on traditional spoofing datasets generated by vocoders struggle to detect synthesized speech from current CoSG systems. Additionally, we propose a comprehensive neural audio codec taxonomy, categorizing neural audio codecs by their root components: vector quantizer, auxiliary objectives, and decoder types, with detailed explanations and representative examples for each. Using this comprehensive taxonomy, we conduct stratified analysis to provide valuable insights for future CodecFake detection research.
Abstract:This study develops a question-answering system based on Retrieval-Augmented Generation (RAG) using Chinese Wikipedia and Lawbank as retrieval sources. Using TTQA and TMMLU+ as evaluation datasets, the system employs BGE-M3 for dense vector retrieval to obtain highly relevant search results and BGE-reranker to reorder these results based on query relevance. The most pertinent retrieval outcomes serve as reference knowledge for a Large Language Model (LLM), enhancing its ability to answer questions and establishing a knowledge retrieval system grounded in generative AI. The system's effectiveness is assessed through a two-stage evaluation: automatic and assisted performance evaluations. The automatic evaluation calculates accuracy by comparing the model's auto-generated labels with ground truth answers, measuring performance under standardized conditions without human intervention. The assisted performance evaluation involves 20 finance-related multiple-choice questions answered by 20 participants without financial backgrounds. Initially, participants answer independently. Later, they receive system-generated reference information to assist in answering, examining whether the system improves accuracy when assistance is provided. The main contributions of this research are: (1) Enhanced LLM Capability: By integrating BGE-M3 and BGE-reranker, the system retrieves and reorders highly relevant results, reduces hallucinations, and dynamically accesses authorized or public knowledge sources. (2) Improved Data Privacy: A customized RAG architecture enables local operation of the LLM, eliminating the need to send private data to external servers. This approach enhances data security, reduces reliance on commercial services, lowers operational costs, and mitigates privacy risks.
Abstract:This paper proposes the use of iterative transfer learning applied to deep learning models for side-channel attacks. Currently, most of the side-channel attack methods train a model for each individual byte, without considering the correlation between bytes. However, since the models' parameters for attacking different bytes may be similar, we can leverage transfer learning, meaning that we first train the model for one of the key bytes, then use the trained model as a pretrained model for the remaining bytes. This technique can be applied iteratively, a process known as iterative transfer learning. Experimental results show that when using thermal or power consumption map images as input, and multilayer perceptron or convolutional neural network as the model, our method improves average performance, especially when the amount of data is insufficient.
Abstract:The goal of music style transfer is to convert a music performance by one instrument into another while keeping the musical contents unchanged. In this paper, we investigate another style transfer scenario called ``failed-music style transfer''. Unlike the usual music style transfer where the content remains the same and only the instrumental characteristics are changed, this scenario seeks to transfer the music from the source instrument to the target instrument which is deliberately performed off-pitch. Our work attempts to transfer normally played music into off-pitch recorder music, which we call ``failed-style recorder'', and study the results of the conversion. To carry out this work, we have also proposed a dataset of failed-style recorders for this task, called ``FR109 Dataset''. Such an experiment explores the music style transfer task in a more expressive setting, as the generated audio should sound like an ``off-pitch recorder'' while maintaining a certain degree of naturalness.
Abstract:Current approaches in 3D human pose estimation primarily focus on regressing 3D joint locations, often neglecting critical physical constraints such as bone length consistency and body symmetry. This work introduces a recurrent neural network architecture designed to capture holistic information across entire video sequences, enabling accurate prediction of bone lengths. To enhance training effectiveness, we propose a novel augmentation strategy using synthetic bone lengths that adhere to physical constraints. Moreover, we present a bone length adjustment method that preserves bone orientations while substituting bone lengths with predicted values. Our results demonstrate that existing 3D human pose estimation models can be significantly enhanced through this adjustment process. Furthermore, we fine-tune human pose estimation models using inferred bone lengths, observing notable improvements. Our bone length prediction model surpasses the previous best results, and our adjustment and fine-tuning method enhance performance across several metrics on the Human3.6M dataset.
Abstract:Electric guitar tone modeling typically focuses on the non-linear transformation from clean to amplifier-rendered audio. Traditional methods rely on one-to-one mappings, incorporating device parameters into neural models to replicate specific amplifiers. However, these methods are limited by the need for specific training data. In this paper, we adapt a model based on the previous work, which leverages a tone embedding encoder and a feature wise linear modulation (FiLM) condition method. In this work, we altered conditioning method using a hypernetwork-based gated convolutional network (GCN) to generate audio that blends clean input with the tone characteristics of reference audio. By extending the training data to cover a wider variety of amplifier tones, our model is able to capture a broader range of tones. Additionally, we developed a real-time plugin to demonstrate the system's practical application, allowing users to experience its performance interactively. Our results indicate that the proposed system achieves superior tone modeling versatility compared to traditional methods.
Abstract:Mainstream zero-shot TTS production systems like Voicebox and Seed-TTS achieve human parity speech by leveraging Flow-matching and Diffusion models, respectively. Unfortunately, human-level audio synthesis leads to identity misuse and information security issues. Currently, many antispoofing models have been developed against deepfake audio. However, the efficacy of current state-of-the-art anti-spoofing models in countering audio synthesized by diffusion and flowmatching based TTS systems remains unknown. In this paper, we proposed the Diffusion and Flow-matching based Audio Deepfake (DFADD) dataset. The DFADD dataset collected the deepfake audio based on advanced diffusion and flowmatching TTS models. Additionally, we reveal that current anti-spoofing models lack sufficient robustness against highly human-like audio generated by diffusion and flow-matching TTS systems. The proposed DFADD dataset addresses this gap and provides a valuable resource for developing more resilient anti-spoofing models.
Abstract:Replicating analog device circuits through neural audio effect modeling has garnered increasing interest in recent years. Existing work has predominantly focused on a one-to-one emulation strategy, modeling specific devices individually. In this paper, we tackle the less-explored scenario of one-to-many emulation, utilizing conditioning mechanisms to emulate multiple guitar amplifiers through a single neural model. For condition representation, we use contrastive learning to build a tone embedding encoder that extracts style-related features of various amplifiers, leveraging a dataset of comprehensive amplifier settings. Targeting zero-shot application scenarios, we also examine various strategies for tone embedding representation, evaluating referenced tone embedding against two retrieval-based embedding methods for amplifiers unseen in the training time. Our findings showcase the efficacy and potential of the proposed methods in achieving versatile one-to-many amplifier modeling, contributing a foundational step towards zero-shot audio modeling applications.
Abstract:Music source separation aims to separate polyphonic music into different types of sources. Most existing methods focus on enhancing the quality of separated results by using a larger model structure, rendering them unsuitable for deployment on edge devices. Moreover, these methods may produce low-quality output when the input duration is short, making them impractical for real-time applications. Therefore, the goal of this paper is to enhance a lightweight model, MMDenstNet, to strike a balance between separation quality and latency for real-time applications. Different directions of improvement are explored or proposed in this paper, including complex ideal ratio mask, self-attention, band-merge-split method, and feature look back. Source-to-distortion ratio, real-time factor, and optimal latency are employed to evaluate the performance. To align with our application requirements, the evaluation process in this paper focuses on the separation performance of the accompaniment part. Experimental results demonstrate that our improvement achieves low real-time factor and optimal latency while maintaining acceptable separation quality.
Abstract:Recent years have seen increasing interest in applying deep learning methods to the modeling of guitar amplifiers or effect pedals. Existing methods are mainly based on the supervised approach, requiring temporally-aligned data pairs of unprocessed and rendered audio. However, this approach does not scale well, due to the complicated process involved in creating the data pairs. A very recent work done by Wright et al. has explored the potential of leveraging unpaired data for training, using a generative adversarial network (GAN)-based framework. This paper extends their work by using more advanced discriminators in the GAN, and using more unpaired data for training. Specifically, drawing inspiration from recent advancements in neural vocoders, we employ in our GAN-based model for guitar amplifier modeling two sets of discriminators, one based on multi-scale discriminator (MSD) and the other multi-period discriminator (MPD). Moreover, we experiment with adding unprocessed audio signals that do not have the corresponding rendered audio of a target tone to the training data, to see how much the GAN model benefits from the unpaired data. Our experiments show that the proposed two extensions contribute to the modeling of both low-gain and high-gain guitar amplifiers.