Abstract:Music source separation aims to separate polyphonic music into different types of sources. Most existing methods focus on enhancing the quality of separated results by using a larger model structure, rendering them unsuitable for deployment on edge devices. Moreover, these methods may produce low-quality output when the input duration is short, making them impractical for real-time applications. Therefore, the goal of this paper is to enhance a lightweight model, MMDenstNet, to strike a balance between separation quality and latency for real-time applications. Different directions of improvement are explored or proposed in this paper, including complex ideal ratio mask, self-attention, band-merge-split method, and feature look back. Source-to-distortion ratio, real-time factor, and optimal latency are employed to evaluate the performance. To align with our application requirements, the evaluation process in this paper focuses on the separation performance of the accompaniment part. Experimental results demonstrate that our improvement achieves low real-time factor and optimal latency while maintaining acceptable separation quality.
Abstract:The tasks of automatic lyrics transcription and lyrics alignment have witnessed significant performance improvements in the past few years. However, most of the previous works only focus on English in which large-scale datasets are available. In this paper, we address lyrics transcription and alignment of polyphonic Mandarin pop music in a low-resource setting. To deal with the data scarcity issue, we adapt pretrained Whisper model and fine-tune it on a monophonic Mandarin singing dataset. With the use of data augmentation and source separation model, results show that the proposed method achieves a character error rate of less than 18% on a Mandarin polyphonic dataset for lyrics transcription, and a mean absolute error of 0.071 seconds for lyrics alignment. Our results demonstrate the potential of adapting a pretrained speech model for lyrics transcription and alignment in low-resource scenarios.