Abstract:The sharp increase in data-related expenses has motivated research into condensing datasets while retaining the most informative features. Dataset distillation has thus recently come to the fore. This paradigm generates synthetic dataset that are representative enough to replace the original dataset in training a neural network. To avoid redundancy in these synthetic datasets, it is crucial that each element contains unique features and remains diverse from others during the synthesis stage. In this paper, we provide a thorough theoretical and empirical analysis of diversity within synthesized datasets. We argue that enhancing diversity can improve the parallelizable yet isolated synthesizing approach. Specifically, we introduce a novel method that employs dynamic and directed weight adjustment techniques to modulate the synthesis process, thereby maximizing the representativeness and diversity of each synthetic instance. Our method ensures that each batch of synthetic data mirrors the characteristics of a large, varying subset of the original dataset. Extensive experiments across multiple datasets, including CIFAR, Tiny-ImageNet, and ImageNet-1K, demonstrate the superior performance of our method, highlighting its effectiveness in producing diverse and representative synthetic datasets with minimal computational expense.
Abstract:Neural audio codec models are becoming increasingly important as they serve as tokenizers for audio, enabling efficient transmission or facilitating speech language modeling. The ideal neural audio codec should maintain content, paralinguistics, speaker characteristics, and audio information even at low bitrates. Recently, numerous advanced neural codec models have been proposed. However, codec models are often tested under varying experimental conditions. As a result, we introduce the Codec-SUPERB challenge at SLT 2024, designed to facilitate fair and lightweight comparisons among existing codec models and inspire advancements in the field. This challenge brings together representative speech applications and objective metrics, and carefully selects license-free datasets, sampling them into small sets to reduce evaluation computation costs. This paper presents the challenge's rules, datasets, five participant systems, results, and findings.
Abstract:Mainstream zero-shot TTS production systems like Voicebox and Seed-TTS achieve human parity speech by leveraging Flow-matching and Diffusion models, respectively. Unfortunately, human-level audio synthesis leads to identity misuse and information security issues. Currently, many antispoofing models have been developed against deepfake audio. However, the efficacy of current state-of-the-art anti-spoofing models in countering audio synthesized by diffusion and flowmatching based TTS systems remains unknown. In this paper, we proposed the Diffusion and Flow-matching based Audio Deepfake (DFADD) dataset. The DFADD dataset collected the deepfake audio based on advanced diffusion and flowmatching TTS models. Additionally, we reveal that current anti-spoofing models lack sufficient robustness against highly human-like audio generated by diffusion and flow-matching TTS systems. The proposed DFADD dataset addresses this gap and provides a valuable resource for developing more resilient anti-spoofing models.
Abstract:Subtle semantic differences in retinal image and text data present great challenges for pre-training visual-language models. Moreover, false negative samples, i.e., image-text pairs having the same semantics but incorrectly regarded as negatives, disrupt the visual-language pre-training process and affect the model's learning ability. This work aims to develop a retinal foundation model, called ViLReF, by pre-training on a paired dataset comprising 451,956 retinal images and corresponding diagnostic text reports. In our vision-language pre-training strategy, we leverage expert knowledge to facilitate the extraction of labels and propose a novel constraint, the Weighted Similarity Coupling Loss, to adjust the speed of pushing sample pairs further apart dynamically within the feature space. Furthermore, we employ a batch expansion module with dynamic memory queues, maintained by momentum encoders, to supply extra samples and compensate for the vacancies caused by eliminating false negatives. Extensive experiments are conducted on multiple datasets for downstream classification and segmentation tasks. The experimental results demonstrate the powerful zero-shot and transfer learning capabilities of ViLReF, verifying the effectiveness of our pre-training strategy. Our ViLReF model is available at: https://github.com/T6Yang/ViLReF.
Abstract:Dataset distillation has emerged as a technique aiming to condense informative features from large, natural datasets into a compact and synthetic form. While recent advancements have refined this technique, its performance is bottlenecked by the prevailing class-specific synthesis paradigm. Under this paradigm, synthetic data is optimized exclusively for a pre-assigned one-hot label, creating an implicit class barrier in feature condensation. This leads to inefficient utilization of the distillation budget and oversight of inter-class feature distributions, which ultimately limits the effectiveness and efficiency, as demonstrated in our analysis. To overcome these constraints, this paper presents the Inter-class Feature Compensator (INFER), an innovative distillation approach that transcends the class-specific data-label framework widely utilized in current dataset distillation methods. Specifically, INFER leverages a Universal Feature Compensator (UFC) to enhance feature integration across classes, enabling the generation of multiple additional synthetic instances from a single UFC input. This significantly improves the efficiency of the distillation budget. Moreover, INFER enriches inter-class interactions during the distillation, thereby enhancing the effectiveness and generalizability of the distilled data. By allowing for the linear interpolation of labels similar to those in the original dataset, INFER meticulously optimizes the synthetic data and dramatically reduces the size of soft labels in the synthetic dataset to almost zero, establishing a new benchmark for efficiency and effectiveness in dataset distillation.
Abstract:Automatic Speaker Verification (ASV), increasingly used in security-critical applications, faces vulnerabilities from rising adversarial attacks, with few effective defenses available. In this paper, we propose a neural codec-based adversarial sample detection method for ASV. The approach leverages the codec's ability to discard redundant perturbations and retain essential information. Specifically, we distinguish between genuine and adversarial samples by comparing ASV score differences between original and re-synthesized audio (by codec models). This comprehensive study explores all open-source neural codecs and their variant models for experiments. The Descript-audio-codec model stands out by delivering the highest detection rate among 15 neural codecs and surpassing seven prior state-of-the-art (SOTA) detection methods. Note that, our single-model method even outperforms a SOTA ensemble method by a large margin.
Abstract:The Vision-Language Foundation model is increasingly investigated in the fields of computer vision and natural language processing, yet its exploration in ophthalmology and broader medical applications remains limited. The challenge is the lack of labeled data for the training of foundation model. To handle this issue, a CLIP-style retinal image foundation model is developed in this paper. Our foundation model, RET-CLIP, is specifically trained on a dataset of 193,865 patients to extract general features of color fundus photographs (CFPs), employing a tripartite optimization strategy to focus on left eye, right eye, and patient level to reflect real-world clinical scenarios. Extensive experiments demonstrate that RET-CLIP outperforms existing benchmarks across eight diverse datasets spanning four critical diagnostic categories: diabetic retinopathy, glaucoma, multiple disease diagnosis, and multi-label classification of multiple diseases, which demonstrate the performance and generality of our foundation model. The sourse code and pre-trained model are available at https://github.com/sStonemason/RET-CLIP.
Abstract:Dataset distillation is an advanced technique aimed at compressing datasets into significantly smaller counterparts, while preserving formidable training performance. Significant efforts have been devoted to promote evaluation accuracy under limited compression ratio while overlooked the robustness of distilled dataset. In this work, we introduce a comprehensive benchmark that, to the best of our knowledge, is the most extensive to date for evaluating the adversarial robustness of distilled datasets in a unified way. Our benchmark significantly expands upon prior efforts by incorporating a wider range of dataset distillation methods, including the latest advancements such as TESLA and SRe2L, a diverse array of adversarial attack methods, and evaluations across a broader and more extensive collection of datasets such as ImageNet-1K. Moreover, we assessed the robustness of these distilled datasets against representative adversarial attack algorithms like PGD and AutoAttack, while exploring their resilience from a frequency perspective. We also discovered that incorporating distilled data into the training batches of the original dataset can yield to improvement of robustness.
Abstract:Speech emotion recognition (SER) is a pivotal technology for human-computer interaction systems. However, 80.77% of SER papers yield results that cannot be reproduced. We develop EMO-SUPERB, short for EMOtion Speech Universal PERformance Benchmark, which aims to enhance open-source initiatives for SER. EMO-SUPERB includes a user-friendly codebase to leverage 15 state-of-the-art speech self-supervised learning models (SSLMs) for exhaustive evaluation across six open-source SER datasets. EMO-SUPERB streamlines result sharing via an online leaderboard, fostering collaboration within a community-driven benchmark and thereby enhancing the development of SER. On average, 2.58% of annotations are annotated using natural language. SER relies on classification models and is unable to process natural languages, leading to the discarding of these valuable annotations. We prompt ChatGPT to mimic annotators, comprehend natural language annotations, and subsequently re-label the data. By utilizing labels generated by ChatGPT, we consistently achieve an average relative gain of 3.08% across all settings.
Abstract:Dataset pruning aims to construct a coreset capable of achieving performance comparable to the original, full dataset. Most existing dataset pruning methods rely on snapshot-based criteria to identify representative samples, often resulting in poor generalization across various pruning and cross-architecture scenarios. Recent studies have addressed this issue by expanding the scope of training dynamics considered, including factors such as forgetting event and probability change, typically using an averaging approach. However, these works struggle to integrate a broader range of training dynamics without overlooking well-generalized samples, which may not be sufficiently highlighted in an averaging manner. In this study, we propose a novel dataset pruning method termed as Temporal Dual-Depth Scoring (TDDS), to tackle this problem. TDDS utilizes a dual-depth strategy to achieve a balance between incorporating extensive training dynamics and identifying representative samples for dataset pruning. In the first depth, we estimate the series of each sample's individual contributions spanning the training progress, ensuring comprehensive integration of training dynamics. In the second depth, we focus on the variability of the sample-wise contributions identified in the first depth to highlight well-generalized samples. Extensive experiments conducted on CIFAR and ImageNet datasets verify the superiority of TDDS over previous SOTA methods. Specifically on CIFAR-100, our method achieves 54.51% accuracy with only 10% training data, surpassing random selection by 7.83% and other comparison methods by at least 12.69%.