Abstract:The emergence of Retrieval-augmented generation (RAG) has alleviated the issues of outdated and hallucinatory content in the generation of large language models (LLMs), yet it still reveals numerous limitations. When a general-purpose LLM serves as the RAG generator, it often suffers from inadequate response informativeness, response robustness, and citation quality. Past approaches to tackle these limitations, either by incorporating additional steps beyond generating responses or optimizing the generator through supervised fine-tuning (SFT), still failed to align with the RAG requirement thoroughly. Consequently, optimizing the RAG generator from multiple preference perspectives while maintaining its end-to-end LLM form remains a challenge. To bridge this gap, we propose Multiple Perspective Preference Alignment for Retrieval-Augmented Generation (PA-RAG), a method for optimizing the generator of RAG systems to align with RAG requirements comprehensively. Specifically, we construct high-quality instruction fine-tuning data and multi-perspective preference data by sampling varied quality responses from the generator across different prompt documents quality scenarios. Subsequently, we optimize the generator using SFT and Direct Preference Optimization (DPO). Extensive experiments conducted on four question-answer datasets across three LLMs demonstrate that PA-RAG can significantly enhance the performance of RAG generators. Our code and datasets are available at https://github.com/wujwyi/PA-RAG.
Abstract:Existing works on human-centric video understanding typically focus on analyzing specific moment or entire videos. However, many applications require higher precision at the frame level. In this work, we propose a novel task, BestShot, which aims to locate highlight frames within human-centric videos via language queries. This task demands not only a deep semantic comprehension of human actions but also precise temporal localization. To support this task, we introduce the BestShot Benchmark. %The benchmark is meticulously constructed by combining human detection and tracking, potential frame selection based on human judgment, and detailed textual descriptions crafted by human input to ensure precision. The benchmark is meticulously constructed by combining human-annotated highlight frames, detailed textual descriptions and duration labeling. These descriptions encompass three critical elements: (1) Visual content; (2) Fine-grained action; and (3) Human Pose Description. Together, these elements provide the necessary precision to identify the exact highlight frames in videos. To tackle this problem, we have collected two distinct datasets: (i) ShotGPT4o Dataset, which is algorithmically generated by GPT-4o and (ii) Image-SMPLText Dataset, a dataset with large-scale and accurate per-frame pose description leveraging PoseScript and existing pose estimation datasets. Based on these datasets, we present a strong baseline model, ShotVL, fine-tuned from InternVL, specifically for BestShot. We highlight the impressive zero-shot capabilities of our model and offer comparative analyses with existing SOTA models. ShotVL demonstrates a significant 52% improvement over InternVL on the BestShot Benchmark and a notable 57% improvement on the THUMOS14 Benchmark, all while maintaining the SOTA performance in general image classification and retrieval.
Abstract:With the increasing prevalence of cross-domain Text-Attributed Graph (TAG) Data (e.g., citation networks, recommendation systems, social networks, and ai4science), the integration of Graph Neural Networks (GNNs) and Large Language Models (LLMs) into a unified Model architecture (e.g., LLM as enhancer, LLM as collaborators, LLM as predictor) has emerged as a promising technological paradigm. The core of this new graph learning paradigm lies in the synergistic combination of GNNs' ability to capture complex structural relationships and LLMs' proficiency in understanding informative contexts from the rich textual descriptions of graphs. Therefore, we can leverage graph description texts with rich semantic context to fundamentally enhance Data quality, thereby improving the representational capacity of model-centric approaches in line with data-centric machine learning principles. By leveraging the strengths of these distinct neural network architectures, this integrated approach addresses a wide range of TAG-based Task (e.g., graph learning, graph reasoning, and graph question answering), particularly in complex industrial scenarios (e.g., supervised, few-shot, and zero-shot settings). In other words, we can treat text as a medium to enable cross-domain generalization of graph learning Model, allowing a single graph model to effectively handle the diversity of downstream graph-based Task across different data domains. This work serves as a foundational reference for researchers and practitioners looking to advance graph learning methodologies in the rapidly evolving landscape of LLM. We consistently maintain the related open-source materials at \url{https://github.com/xkLi-Allen/Awesome-GNN-in-LLMs-Papers}.
Abstract:Event-based motion field estimation is an important task. However, current optical flow methods face challenges: learning-based approaches, often frame-based and relying on CNNs, lack cross-domain transferability, while model-based methods, though more robust, are less accurate. To address the limitations of optical flow estimation, recent works have focused on normal flow, which can be more reliably measured in regions with limited texture or strong edges. However, existing normal flow estimators are predominantly model-based and suffer from high errors. In this paper, we propose a novel supervised point-based method for normal flow estimation that overcomes the limitations of existing event learning-based approaches. Using a local point cloud encoder, our method directly estimates per-event normal flow from raw events, offering multiple unique advantages: 1) It produces temporally and spatially sharp predictions. 2) It supports more diverse data augmentation, such as random rotation, to improve robustness across various domains. 3) It naturally supports uncertainty quantification via ensemble inference, which benefits downstream tasks. 4) It enables training and inference on undistorted data in normalized camera coordinates, improving transferability across cameras. Extensive experiments demonstrate our method achieves better and more consistent performance than state-of-the-art methods when transferred across different datasets. Leveraging this transferability, we train our model on the union of datasets and release it for public use. Finally, we introduce an egomotion solver based on a maximum-margin problem that uses normal flow and IMU to achieve strong performance in challenging scenarios.
Abstract:We introduce the idea of AquaFuse, a physics-based method for synthesizing waterbody properties in underwater imagery. We formulate a closed-form solution for waterbody fusion that facilitates realistic data augmentation and geometrically consistent underwater scene rendering. AquaFuse leverages the physical characteristics of light propagation underwater to synthesize the waterbody from one scene to the object contents of another. Unlike data-driven style transfer, AquaFuse preserves the depth consistency and object geometry in an input scene. We validate this unique feature by comprehensive experiments over diverse underwater scenes. We find that the AquaFused images preserve over 94% depth consistency and 90-95% structural similarity of the input scenes. We also demonstrate that it generates accurate 3D view synthesis by preserving object geometry while adapting to the inherent waterbody fusion process. AquaFuse opens up a new research direction in data augmentation by geometry-preserving style transfer for underwater imaging and robot vision applications.
Abstract:The number of large language models (LLMs) with varying parameter scales and vocabularies is increasing. While they deliver powerful performance, they also face a set of common optimization needs to meet specific requirements or standards, such as instruction following or avoiding the output of sensitive information from the real world. However, how to reuse the fine-tuning outcomes of one model to other models to reduce training costs remains a challenge. To bridge this gap, we introduce Cross-model Control (CMC), a method that improves multiple LLMs in one-time training with a portable tiny language model. Specifically, we have observed that the logit shift before and after fine-tuning is remarkably similar across different models. Based on this insight, we incorporate a tiny language model with a minimal number of parameters. By training alongside a frozen template LLM, the tiny model gains the capability to alter the logits output by the LLMs. To make this tiny language model applicable to models with different vocabularies, we propose a novel token mapping strategy named PM-MinED. We have conducted extensive experiments on instruction tuning and unlearning tasks, demonstrating the effectiveness of CMC. Our code is available at https://github.com/wujwyi/CMC.
Abstract:Recent advancements in large language models (LLMs) have been remarkable. Users face a choice between using cloud-based LLMs for generation quality and deploying local-based LLMs for lower computational cost. The former option is typically costly and inefficient, while the latter usually fails to deliver satisfactory performance for reasoning steps requiring deliberate thought processes. In this work, we propose a novel LLM utilization paradigm that facilitates the collaborative operation of large cloud-based LLMs and smaller local-deployed LLMs. Our framework comprises two primary modules: the local agent instantiated with a relatively smaller LLM, handling less complex reasoning steps, and the cloud agent equipped with a larger LLM, managing more intricate reasoning steps. This collaborative processing is enabled through an adaptive mechanism where the local agent introspectively identifies errors and proactively seeks assistance from the cloud agent, thereby effectively integrating the strengths of both locally-deployed and cloud-based LLMs, resulting in significant enhancements in task completion performance and efficiency. We evaluate AdaSwitch across 7 benchmarks, ranging from mathematical reasoning and complex question answering, using various types of LLMs to instantiate the local and cloud agents. The empirical results show that AdaSwitch effectively improves the performance of the local agent, and sometimes achieves competitive results compared to the cloud agent while utilizing much less computational overhead.
Abstract:When observing objects, humans benefit from their spatial visualization and mental rotation ability to envision potential optimal viewpoints based on the current observation. This capability is crucial for enabling robots to achieve efficient and robust scene perception during operation, as optimal viewpoints provide essential and informative features for accurately representing scenes in 2D images, thereby enhancing downstream tasks. To endow robots with this human-like active viewpoint optimization capability, we propose ViewActive, a modernized machine learning approach drawing inspiration from aspect graph, which provides viewpoint optimization guidance based solely on the current 2D image input. Specifically, we introduce the 3D Viewpoint Quality Field (VQF), a compact and consistent representation for viewpoint quality distribution similar to an aspect graph, composed of three general-purpose viewpoint quality metrics: self-occlusion ratio, occupancy-aware surface normal entropy, and visual entropy. We utilize pre-trained image encoders to extract robust visual and semantic features, which are then decoded into the 3D VQF, allowing our model to generalize effectively across diverse objects, including unseen categories.The lightweight ViewActive network (72 FPS on a single GPU) significantly enhances the performance of state-of-the-art object recognition pipelines and can be integrated into real-time motion planning for robotic applications. Our code and dataset are available here: https://github.com/jiayi-wu-umd/ViewActive
Abstract:The recent emergence of 3D Gaussian splatting (3DGS) leverages the advantage of explicit point-based representations, which significantly improves the rendering speed and quality of novel-view synthesis. However, 3D radiance field rendering in environments with high-dynamic motion or challenging illumination condition remains problematic in real-world robotic tasks. The reason is that fast egomotion is prevalent real-world robotic tasks, which induces motion blur, leading to inaccuracies and artifacts in the reconstructed structure. To alleviate this problem, we propose Event3DGS, the first method that learns Gaussian Splatting solely from raw event streams. By exploiting the high temporal resolution of event cameras and explicit point-based representation, Event3DGS can reconstruct high-fidelity 3D structures solely from the event streams under fast egomotion. Our sparsity-aware sampling and progressive training approaches allow for better reconstruction quality and consistency. To further enhance the fidelity of appearance, we explicitly incorporate the motion blur formation process into a differentiable rasterizer, which is used with a limited set of blurred RGB images to refine the appearance. Extensive experiments on multiple datasets validate the superior rendering quality of Event3DGS compared with existing approaches, with over 95% lower training time and faster rendering speed in orders of magnitude.
Abstract:Over the past few years, we have witnessed remarkable advancements in Code Pre-trained Models (CodePTMs). These models achieved excellent representation capabilities by designing structure-based pre-training tasks for code. However, how to enhance the absorption of structural knowledge when fine-tuning CodePTMs still remains a significant challenge. To fill this gap, in this paper, we present Structure-aware Fine-tuning (SAT), a novel structure-enhanced and plug-and-play fine-tuning method for CodePTMs. We first propose a structure loss to quantify the difference between the information learned by CodePTMs and the knowledge extracted from code structure. Specifically, we use the attention scores extracted from Transformer layer as the learned structural information, and the shortest path length between leaves in abstract syntax trees as the structural knowledge. Subsequently, multi-task learning is introduced to improve the performance of fine-tuning. Experiments conducted on four pre-trained models and two generation tasks demonstrate the effectiveness of our proposed method as a plug-and-play solution. Furthermore, we observed that SAT can benefit CodePTMs more with limited training data.