Abstract:Unleashing the synergies of rapidly evolving mobility technologies in a multi-stakeholder landscape presents unique challenges and opportunities for addressing urban transportation problems. This paper introduces a novel synthetic participatory method, critically leveraging large language models (LLMs) to create digital avatars representing diverse stakeholders to plan shared automated electric mobility systems (SAEMS). These calibratable agents collaboratively identify objectives, envision and evaluate SAEMS alternatives, and strategize implementation under risks and constraints. The results of a Montreal case study indicate that a structured and parameterized workflow provides outputs with high controllability and comprehensiveness on an SAEMS plan than generated using a single LLM-enabled expert agent. Consequently, the approach provides a promising avenue for cost-efficiently improving the inclusivity and interpretability of multi-objective transportation planning, suggesting a paradigm shift in how we envision and strategize for sustainable and equitable transportation systems.
Abstract:Mobility-on-demand (MOD) services have the potential to significantly improve the adaptiveness and recovery of urban logistics and transportation infrastructure, in the wake of disruptive events. This paper presents a survey on the usage of MOD services for resilience improvement (MOD-R) and finds a noticeable increase within recent years on this topic across four main areas: resilient MOD services, novel usage of MOD-R services for improving supply chain resilience, empirical impact evaluation, and supporting technologies. MOD-R services have been utilized for anomaly detection, essential supply delivery, evacuation and rescue, on-site medical care, power grid stabilization, transit service substitution during downtime, and infrastructure and equipment repair. The review reveals integrating electrification, automation, and advanced communication technologies offers significant synergistic benefits. The review also suggests the importance of harnessing the collective capabilities of humans and intelligent machines to effectively implement versatile, multi-functional MOD-R services during crises.
Abstract:This paper proposes two new algorithms for certified perception in safety-critical robotic applications. The first is a Certified Visual Odometry algorithm, which uses a RGBD camera with bounded sensor noise to construct a visual odometry estimate with provable error bounds. The second is a Certified Mapping algorithm which, using the same RGBD images, constructs a Signed Distance Field of the obstacle environment, always safely underestimating the distance to the nearest obstacle. This is required to avoid errors due to VO drift. The algorithms are demonstrated in hardware experiments, where we demonstrate both running online at 30FPS. The methods are also compared to state-of-the-art techniques for odometry and mapping.
Abstract:The expressive power of a Gaussian process (GP) model comes at a cost of poor scalability in the data size. To improve its scalability, this paper presents a low-rank-cum-Markov approximation (LMA) of the GP model that is novel in leveraging the dual computational advantages stemming from complementing a low-rank approximate representation of the full-rank GP based on a support set of inputs with a Markov approximation of the resulting residual process; the latter approximation is guaranteed to be closest in the Kullback-Leibler distance criterion subject to some constraint and is considerably more refined than that of existing sparse GP models utilizing low-rank representations due to its more relaxed conditional independence assumption (especially with larger data). As a result, our LMA method can trade off between the size of the support set and the order of the Markov property to (a) incur lower computational cost than such sparse GP models while achieving predictive performance comparable to them and (b) accurately represent features/patterns of any scale. Interestingly, varying the Markov order produces a spectrum of LMAs with PIC approximation and full-rank GP at the two extremes. An advantage of our LMA method is that it is amenable to parallelization on multiple machines/cores, thereby gaining greater scalability. Empirical evaluation on three real-world datasets in clusters of up to 32 computing nodes shows that our centralized and parallel LMA methods are significantly more time-efficient and scalable than state-of-the-art sparse and full-rank GP regression methods while achieving comparable predictive performances.