Abstract:6D object pose estimation is the problem of identifying the position and orientation of an object relative to a chosen coordinate system, which is a core technology for modern XR applications. State-of-the-art 6D object pose estimators directly predict an object pose given an object observation. Due to the ill-posed nature of the pose estimation problem, where multiple different poses can correspond to a single observation, generating additional plausible estimates per observation can be valuable. To address this, we reformulate the state-of-the-art algorithm GDRNPP and introduce EPRO-GDR (End-to-End Probabilistic Geometry-Guided Regression). Instead of predicting a single pose per detection, we estimate a probability density distribution of the pose. Using the evaluation procedure defined by the BOP (Benchmark for 6D Object Pose Estimation) Challenge, we test our approach on four of its core datasets and demonstrate superior quantitative results for EPRO-GDR on LM-O, YCB-V, and ITODD. Our probabilistic solution shows that predicting a pose distribution instead of a single pose can improve state-of-the-art single-view pose estimation while providing the additional benefit of being able to sample multiple meaningful pose candidates.
Abstract:Pre-trained Language Model (PLM) is nowadays the mainstay of Unsupervised Sentence Representation Learning (USRL). However, PLMs are sensitive to the frequency information of words from their pre-training corpora, resulting in anisotropic embedding space, where the embeddings of high-frequency words are clustered but those of low-frequency words disperse sparsely. This anisotropic phenomenon results in two problems of similarity bias and information bias, lowering the quality of sentence embeddings. To solve the problems, we fine-tune PLMs by leveraging the frequency information of words and propose a novel USRL framework, namely Sentence Representation Learning with Frequency-induced Adversarial tuning and Incomplete sentence filtering (SLT-FAI). We calculate the word frequencies over the pre-training corpora of PLMs and assign words thresholding frequency labels. With them, (1) we incorporate a similarity discriminator used to distinguish the embeddings of high-frequency and low-frequency words, and adversarially tune the PLM with it, enabling to achieve uniformly frequency-invariant embedding space; and (2) we propose a novel incomplete sentence detection task, where we incorporate an information discriminator to distinguish the embeddings of original sentences and incomplete sentences by randomly masking several low-frequency words, enabling to emphasize the more informative low-frequency words. Our SLT-FAI is a flexible and plug-and-play framework, and it can be integrated with existing USRL techniques. We evaluate SLT-FAI with various backbones on benchmark datasets. Empirical results indicate that SLT-FAI can be superior to the existing USRL baselines. Our code is released in \url{https://github.com/wangbing1416/SLT-FAI}.