Abstract:We present the design, development, and experimental validation of BlueME, a compact magnetoelectric (ME) antenna array system for underwater robot-to-robot communication. BlueME employs ME antennas operating at their natural mechanical resonance frequency to efficiently transmit and receive very-low-frequency (VLF) electromagnetic signals underwater. To evaluate its performance, we deployed BlueME on an autonomous surface vehicle (ASV) and a remotely operated vehicle (ROV) in open-water field trials. Our tests demonstrate that BlueME maintains reliable signal transmission at distances beyond 200 meters while consuming only 1 watt of power. Field trials show that the system operates effectively in challenging underwater conditions such as turbidity, obstacles, and multipath interference -- that generally affect acoustics and optics. Our analysis also examines the impact of complete submersion on system performance and identifies key deployment considerations. This work represents the first practical underwater deployment of ME antennas outside the laboratory and implements the largest VLF ME array system to date. BlueME demonstrates significant potential for marine robotics and automation in multi-robot cooperative systems and remote sensor networks.
Abstract:We introduce the idea of AquaFuse, a physics-based method for synthesizing waterbody properties in underwater imagery. We formulate a closed-form solution for waterbody fusion that facilitates realistic data augmentation and geometrically consistent underwater scene rendering. AquaFuse leverages the physical characteristics of light propagation underwater to synthesize the waterbody from one scene to the object contents of another. Unlike data-driven style transfer, AquaFuse preserves the depth consistency and object geometry in an input scene. We validate this unique feature by comprehensive experiments over diverse underwater scenes. We find that the AquaFused images preserve over 94% depth consistency and 90-95% structural similarity of the input scenes. We also demonstrate that it generates accurate 3D view synthesis by preserving object geometry while adapting to the inherent waterbody fusion process. AquaFuse opens up a new research direction in data augmentation by geometry-preserving style transfer for underwater imaging and robot vision applications.
Abstract:This paper explores the design and development of a language-based interface for dynamic mission programming of autonomous underwater vehicles (AUVs). The proposed 'Word2Wave' (W2W) framework enables interactive programming and parameter configuration of AUVs for remote subsea missions. The W2W framework includes: (i) a set of novel language rules and command structures for efficient language-to-mission mapping; (ii) a GPT-based prompt engineering module for training data generation; (iii) a small language model (SLM)-based sequence-to-sequence learning pipeline for mission command generation from human speech or text; and (iv) a novel user interface for 2D mission map visualization and human-machine interfacing. The proposed learning pipeline adapts an SLM named T5-Small that can learn language-to-mission mapping from processed language data effectively, providing robust and efficient performance. In addition to a benchmark evaluation with state-of-the-art, we conduct a user interaction study to demonstrate the effectiveness of W2W over commercial AUV programming interfaces. Across participants, W2W-based programming required less than 10% time for mission programming compared to traditional interfaces; it is deemed to be a simpler and more natural paradigm for subsea mission programming with a usability score of 76.25. W2W opens up promising future research opportunities on hands-free AUV mission programming for efficient subsea deployments.
Abstract:Existing technologies for distributed light-field mapping and light pollution monitoring (LPM) rely on either remote satellite imagery or manual light surveying with single-point sensors such as SQMs (sky quality meters). These modalities offer low-resolution data that are not informative for dense light-field mapping, pollutant factor identification, or sustainable policy implementation. In this work, we propose LightViz -- an interactive software interface to survey, simulate, and visualize light pollution maps in real-time. As opposed to manual error-prone methods, LightViz (i) automates the light-field data collection and mapping processes; (ii) provides a platform to simulate various light sources and intensity attenuation models; and (iii) facilitates effective policy identification for conservation. To validate the end-to-end computational pipeline, we design a distributed light-field sensor suit, collect data on Florida coasts, and visualize the distributed light-field maps. In particular, we perform a case study at St. Johns County in Florida, which has a two-decade conservation program for lighting ordinances. The experimental results demonstrate that LightViz can offer high-resolution light-field mapping and provide interactive features to simulate and formulate community policies for light pollution mitigation. We also propose a mathematical formulation for light footprint evaluation, which we integrated into LightViz for targeted LPM in vulnerable communities.
Abstract:Underwater ROVs (Remotely Operated Vehicles) are unmanned submersible vehicles designed for exploring and operating in the depths of the ocean. Despite using high-end cameras, typical teleoperation engines based on first-person (egocentric) views limit a surface operator's ability to maneuver and navigate the ROV in complex deep-water missions. In this paper, we present an interactive teleoperation interface that (i) offers on-demand "third"-person (exocentric) visuals from past egocentric views, and (ii) facilitates enhanced peripheral information with augmented ROV pose in real-time. We achieve this by integrating a 3D geometry-based Ego-to-Exo view synthesis algorithm into a monocular SLAM system for accurate trajectory estimation. The proposed closed-form solution only uses past egocentric views from the ROV and a SLAM backbone for pose estimation, which makes it portable to existing ROV platforms. Unlike data-driven solutions, it is invariant to applications and waterbody-specific scenes. We validate the geometric accuracy of the proposed framework through extensive experiments of 2-DOF indoor navigation and 6-DOF underwater cave exploration in challenging low-light conditions. We demonstrate the benefits of dynamic Ego-to-Exo view generation and real-time pose rendering for remote ROV teleoperation by following navigation guides such as cavelines inside underwater caves. This new way of interactive ROV teleoperation opens up promising opportunities for future research in underwater telerobotics.
Abstract:Underwater caves are challenging environments that are crucial for water resource management, and for our understanding of hydro-geology and history. Mapping underwater caves is a time-consuming, labor-intensive, and hazardous operation. For autonomous cave mapping by underwater robots, the major challenge lies in vision-based estimation in the complete absence of ambient light, which results in constantly moving shadows due to the motion of the camera-light setup. Thus, detecting and following the caveline as navigation guidance is paramount for robots in autonomous cave mapping missions. In this paper, we present a computationally light caveline detection model based on a novel Vision Transformer (ViT)-based learning pipeline. We address the problem of scarce annotated training data by a weakly supervised formulation where the learning is reinforced through a series of noisy predictions from intermediate sub-optimal models. We validate the utility and effectiveness of such weak supervision for caveline detection and tracking in three different cave locations: USA, Mexico, and Spain. Experimental results demonstrate that our proposed model, CL-ViT, balances the robustness-efficiency trade-off, ensuring good generalization performance while offering 10+ FPS on single-board (Jetson TX2) devices.
Abstract:In this paper, we present a fast monocular depth estimation method for enabling 3D perception capabilities of low-cost underwater robots. We formulate a novel end-to-end deep visual learning pipeline named UDepth, which incorporates domain knowledge of image formation characteristics of natural underwater scenes. First, we adapt a new input space from raw RGB image space by exploiting underwater light attenuation prior, and then devise a least-squared formulation for coarse pixel-wise depth prediction. Subsequently, we extend this into a domain projection loss that guides the end-to-end learning of UDepth on over 9K RGB-D training samples. UDepth is designed with a computationally light MobileNetV2 backbone and a Transformer-based optimizer for ensuring fast inference rates on embedded systems. By domain-aware design choices and through comprehensive experimental analyses, we demonstrate that it is possible to achieve state-of-the-art depth estimation performance while ensuring a small computational footprint. Specifically, with 70%-80% less network parameters than existing benchmarks, UDepth achieves comparable and often better depth estimation performance. While the full model offers over 66 FPS (13 FPS) inference rates on a single GPU (CPU core), our domain projection for coarse depth prediction runs at 51.5 FPS rates on single-board NVIDIA Jetson TX2s. The inference pipelines are available at https://github.com/uf-robopi/UDepth.
Abstract:We propose a novel approach for fast and accurate stereo visual Simultaneous Localization and Mapping (SLAM) independent of feature detection and matching. We extend monocular Direct Sparse Odometry (DSO) to a stereo system by optimizing the scale of the 3D points to minimize photometric error for the stereo configuration, which yields a computationally efficient and robust method compared to conventional stereo matching. We further extend it to a full SLAM system with loop closure to reduce accumulated errors. With the assumption of forward camera motion, we imitate a LiDAR scan using the 3D points obtained from the visual odometry and adapt a LiDAR descriptor for place recognition to facilitate more efficient detection of loop closures. Afterward, we estimate the relative pose using direct alignment by minimizing the photometric error for potential loop closures. Optionally, further improvement over direct alignment is achieved by using the Iterative Closest Point (ICP) algorithm. Lastly, we optimize a pose graph to improve SLAM accuracy globally. By avoiding feature detection or matching in our SLAM system, we ensure high computational efficiency and robustness. Thorough experimental validations on public datasets demonstrate its effectiveness compared to the state-of-the-art approaches.
Abstract:In this paper, we introduce a generative model for image enhancement specifically for improving diver detection in the underwater domain. In particular, we present a model that integrates generative adversarial network (GAN)-based image enhancement with the diver detection task. Our proposed approach restructures the GAN objective function to include information from a pre-trained diver detector with the goal to generate images which would enhance the accuracy of the detector in adverse visual conditions. By incorporating the detector output into both the generator and discriminator networks, our model is able to focus on enhancing images beyond aesthetic qualities and specifically to improve robotic detection of scuba divers. We train our network on a large dataset of scuba divers, using a state-of-the-art diver detector, and demonstrate its utility on images collected from oceanic explorations of human-robot teams. Experimental evaluations demonstrate that our approach significantly improves diver detection performance over raw, unenhanced images, and even outperforms detection performance on the output of state-of-the-art underwater image enhancement algorithms. Finally, we demonstrate the inference performance of our network on embedded devices to highlight the feasibility of operating on board mobile robotic platforms.
Abstract:This paper presents a holistic approach to saliency-guided visual attention modeling (SVAM) for use by autonomous underwater robots. Our proposed model, named SVAM-Net, integrates deep visual features at various scales and semantics for effective salient object detection (SOD) in natural underwater images. The SVAM-Net architecture is configured in a unique way to jointly accommodate bottom-up and top-down learning within two separate branches of the network while sharing the same encoding layers. We design dedicated spatial attention modules (SAMs) along these learning pathways to exploit the coarse-level and fine-level semantic features for SOD at four stages of abstractions. The bottom-up branch performs a rough yet reasonably accurate saliency estimation at a fast rate, whereas the deeper top-down branch incorporates a residual refinement module (RRM) that provides fine-grained localization of the salient objects. Extensive performance evaluation of SVAM-Net on benchmark datasets clearly demonstrates its effectiveness for underwater SOD. We also validate its generalization performance by several ocean trials' data that include test images of diverse underwater scenes and waterbodies, and also images with unseen natural objects. Moreover, we analyze its computational feasibility for robotic deployments and demonstrate its utility in several important use cases of visual attention modeling.