Abstract:This project introduces a hierarchical planner integrating Linear Temporal Logic (LTL) constraints with natural language prompting for robot motion planning. The framework decomposes maps into regions, generates directed graphs, and converts them into transition systems for high-level planning. Text instructions are translated into LTL formulas and converted to Deterministic Finite Automata (DFA) for sequential goal-reaching tasks while adhering to safety constraints. High-level plans, derived via Breadth-First Search (BFS), guide low-level planners like Exploring Random Trees (RRT) and Probabilistic Roadmaps (PRM) for obstacle-avoidant navigation along with LTL tasks. The approach demonstrates adaptability to various task complexities, though challenges such as graph construction overhead and suboptimal path generation remain. Future directions include extending to considering terrain conditions and incorporating higher-order dynamics.
Abstract:Existing technologies for distributed light-field mapping and light pollution monitoring (LPM) rely on either remote satellite imagery or manual light surveying with single-point sensors such as SQMs (sky quality meters). These modalities offer low-resolution data that are not informative for dense light-field mapping, pollutant factor identification, or sustainable policy implementation. In this work, we propose LightViz -- an interactive software interface to survey, simulate, and visualize light pollution maps in real-time. As opposed to manual error-prone methods, LightViz (i) automates the light-field data collection and mapping processes; (ii) provides a platform to simulate various light sources and intensity attenuation models; and (iii) facilitates effective policy identification for conservation. To validate the end-to-end computational pipeline, we design a distributed light-field sensor suit, collect data on Florida coasts, and visualize the distributed light-field maps. In particular, we perform a case study at St. Johns County in Florida, which has a two-decade conservation program for lighting ordinances. The experimental results demonstrate that LightViz can offer high-resolution light-field mapping and provide interactive features to simulate and formulate community policies for light pollution mitigation. We also propose a mathematical formulation for light footprint evaluation, which we integrated into LightViz for targeted LPM in vulnerable communities.