Abstract:Video Frame Interpolation aims to recover realistic missing frames between observed frames, generating a high-frame-rate video from a low-frame-rate video. However, without additional guidance, the large motion between frames makes this problem ill-posed. Event-based Video Frame Interpolation (EVFI) addresses this challenge by using sparse, high-temporal-resolution event measurements as motion guidance. This guidance allows EVFI methods to significantly outperform frame-only methods. However, to date, EVFI methods have relied on a limited set of paired event-frame training data, severely limiting their performance and generalization capabilities. In this work, we overcome the limited data challenge by adapting pre-trained video diffusion models trained on internet-scale datasets to EVFI. We experimentally validate our approach on real-world EVFI datasets, including a new one that we introduce. Our method outperforms existing methods and generalizes across cameras far better than existing approaches.
Abstract:We introduce a simple yet effective approach for separating transmitted and reflected light. Our key insight is that the powerful novel view synthesis capabilities provided by modern inverse rendering methods (e.g.,~3D Gaussian splatting) allow one to perform flash/no-flash reflection separation using unpaired measurements -- this relaxation dramatically simplifies image acquisition over conventional paired flash/no-flash reflection separation methods. Through extensive real-world experiments, we demonstrate our method, Flash-Splat, accurately reconstructs both transmitted and reflected scenes in 3D. Our method outperforms existing 3D reflection separation methods, which do not leverage illumination control, by a large margin. Our project webpage is at https://flash-splat.github.io/.
Abstract:The recent emergence of 3D Gaussian splatting (3DGS) leverages the advantage of explicit point-based representations, which significantly improves the rendering speed and quality of novel-view synthesis. However, 3D radiance field rendering in environments with high-dynamic motion or challenging illumination condition remains problematic in real-world robotic tasks. The reason is that fast egomotion is prevalent real-world robotic tasks, which induces motion blur, leading to inaccuracies and artifacts in the reconstructed structure. To alleviate this problem, we propose Event3DGS, the first method that learns Gaussian Splatting solely from raw event streams. By exploiting the high temporal resolution of event cameras and explicit point-based representation, Event3DGS can reconstruct high-fidelity 3D structures solely from the event streams under fast egomotion. Our sparsity-aware sampling and progressive training approaches allow for better reconstruction quality and consistency. To further enhance the fidelity of appearance, we explicitly incorporate the motion blur formation process into a differentiable rasterizer, which is used with a limited set of blurred RGB images to refine the appearance. Extensive experiments on multiple datasets validate the superior rendering quality of Event3DGS compared with existing approaches, with over 95% lower training time and faster rendering speed in orders of magnitude.
Abstract:Imaging through scattering media is a fundamental and pervasive challenge in fields ranging from medical diagnostics to astronomy. A promising strategy to overcome this challenge is wavefront modulation, which induces measurement diversity during image acquisition. Despite its importance, designing optimal wavefront modulations to image through scattering remains under-explored. This paper introduces a novel learning-based framework to address the gap. Our approach jointly optimizes wavefront modulations and a computationally lightweight feedforward "proxy" reconstruction network. This network is trained to recover scenes obscured by scattering, using measurements that are modified by these modulations. The learned modulations produced by our framework generalize effectively to unseen scattering scenarios and exhibit remarkable versatility. During deployment, the learned modulations can be decoupled from the proxy network to augment other more computationally expensive restoration algorithms. Through extensive experiments, we demonstrate our approach significantly advances the state of the art in imaging through scattering media. Our project webpage is at https://wavemo-2024.github.io/.
Abstract:We propose a novel, learning-based method for adaptively generating low probability of detection (LPD) radar waveforms that blend into their operating environment. Our waveforms are designed to follow a distribution that is indistinguishable from the ambient radio frequency (RF) background -- while still being effective at ranging and sensing. To do so, we use an unsupervised, adversarial learning framework; our generator network produces waveforms designed to confuse a critic network, which is optimized to differentiate generated waveforms from the background. To ensure our generated waveforms are still effective for sensing, we introduce and minimize an ambiguity function-based loss on the generated waveforms. We evaluate the performance of our method by comparing the single-pulse detectability of our generated waveforms with traditional LPD waveforms using a separately trained detection neural network. We find that our method can generate LPD waveforms that reduce detectability by up to 90% while simultaneously offering improved ambiguity function (sensing) characteristics. Our framework also provides a mechanism to trade-off detectability and sensing performance.
Abstract:We investigate both the theoretical and algorithmic aspects of likelihood-based methods for recovering a complex-valued signal from multiple sets of measurements, referred to as looks, affected by speckle (multiplicative) noise. Our theoretical contributions include establishing the first existing theoretical upper bound on the Mean Squared Error (MSE) of the maximum likelihood estimator under the deep image prior hypothesis. Our theoretical results capture the dependence of MSE upon the number of parameters in the deep image prior, the number of looks, the signal dimension, and the number of measurements per look. On the algorithmic side, we introduce the concept of bagged Deep Image Priors (Bagged-DIP) and integrate them with projected gradient descent. Furthermore, we show how employing Newton-Schulz algorithm for calculating matrix inverses within the iterations of PGD reduces the computational complexity of the algorithm. We will show that this method achieves the state-of-the-art performance.
Abstract:Underwater perception and 3D surface reconstruction are challenging problems with broad applications in construction, security, marine archaeology, and environmental monitoring. Treacherous operating conditions, fragile surroundings, and limited navigation control often dictate that submersibles restrict their range of motion and, thus, the baseline over which they can capture measurements. In the context of 3D scene reconstruction, it is well-known that smaller baselines make reconstruction more challenging. Our work develops a physics-based multimodal acoustic-optical neural surface reconstruction framework (AONeuS) capable of effectively integrating high-resolution RGB measurements with low-resolution depth-resolved imaging sonar measurements. By fusing these complementary modalities, our framework can reconstruct accurate high-resolution 3D surfaces from measurements captured over heavily-restricted baselines. Through extensive simulations and in-lab experiments, we demonstrate that AONeuS dramatically outperforms recent RGB-only and sonar-only inverse-differentiable-rendering--based surface reconstruction methods. A website visualizing the results of our paper is located at this address: https://aoneus.github.io/
Abstract:Estimating and disentangling epistemic uncertainty (uncertainty that can be reduced with more training data) and aleatoric uncertainty (uncertainty that is inherent to the task at hand) is critically important when applying machine learning (ML) to high-stakes applications such as medical imaging and weather forecasting. Conditional diffusion models' breakthrough ability to accurately and efficiently sample from the posterior distribution of a dataset now makes uncertainty estimation conceptually straightforward: One need only train and sample from a large ensemble of diffusion models. Unfortunately, training such an ensemble becomes computationally intractable as the complexity of the model architecture grows. In this work we introduce a new approach to ensembling, hyper-diffusion, which allows one to accurately estimate epistemic and aleatoric uncertainty with a single model. Unlike existing Monte Carlo dropout based single-model ensembling methods, hyper-diffusion offers the same prediction accuracy as multi-model ensembles. We validate our approach on two distinct tasks: x-ray computed tomography (CT) reconstruction and weather temperature forecasting.
Abstract:Image stacks provide invaluable 3D information in various biological and pathological imaging applications. Fourier ptychographic microscopy (FPM) enables reconstructing high-resolution, wide field-of-view image stacks without z-stack scanning, thus significantly accelerating image acquisition. However, existing FPM methods take tens of minutes to reconstruct and gigabytes of memory to store a high-resolution volumetric scene, impeding fast gigapixel-scale remote digital pathology. While deep learning approaches have been explored to address this challenge, existing methods poorly generalize to novel datasets and can produce unreliable hallucinations. This work presents FPM-INR, a compact and efficient framework that integrates physics-based optical models with implicit neural representations (INR) to represent and reconstruct FPM image stacks. FPM-INR is agnostic to system design or sample types and does not require external training data. In our demonstrated experiments, FPM-INR substantially outperforms traditional FPM algorithms with up to a 25-fold increase in speed and an 80-fold reduction in memory usage for continuous image stack representations.
Abstract:Many imaging inverse problems$\unicode{x2014}$such as image-dependent in-painting and dehazing$\unicode{x2014}$are challenging because their forward models are unknown or depend on unknown latent parameters. While one can solve such problems by training a neural network with vast quantities of paired training data, such paired training data is often unavailable. In this paper, we propose a generalized framework for training image reconstruction networks when paired training data is scarce. In particular, we demonstrate the ability of image denoising algorithms and, by extension, denoising diffusion models to supervise network training in the absence of paired training data.