Abstract:Snapshot compressive imaging (SCI) refers to the recovery of three-dimensional data cubes-such as videos or hyperspectral images-from their two-dimensional projections, which are generated by a special encoding of the data with a mask. SCI systems commonly use binary-valued masks that follow certain physical constraints. Optimizing these masks subject to these constraints is expected to improve system performance. However, prior theoretical work on SCI systems focuses solely on independently and identically distributed (i.i.d.) Gaussian masks, which do not permit such optimization. On the other hand, existing practical mask optimizations rely on computationally intensive joint optimizations that provide limited insight into the role of masks and are expected to be sub-optimal due to the non-convexity and complexity of the optimization. In this paper, we analytically characterize the performance of SCI systems employing binary masks and leverage our analysis to optimize hardware parameters. Our findings provide a comprehensive and fundamental understanding of the role of binary masks - with both independent and dependent elements - and their optimization. We also present simulation results that confirm our theoretical findings and further illuminate different aspects of mask design.
Abstract:Unrolled networks have become prevalent in various computer vision and imaging tasks. Although they have demonstrated remarkable efficacy in solving specific computer vision and computational imaging tasks, their adaptation to other applications presents considerable challenges. This is primarily due to the multitude of design decisions that practitioners working on new applications must navigate, each potentially affecting the network's overall performance. These decisions include selecting the optimization algorithm, defining the loss function, and determining the number of convolutional layers, among others. Compounding the issue, evaluating each design choice requires time-consuming simulations to train, fine-tune the neural network, and optimize for its performance. As a result, the process of exploring multiple options and identifying the optimal configuration becomes time-consuming and computationally demanding. The main objectives of this paper are (1) to unify some ideas and methodologies used in unrolled networks to reduce the number of design choices a user has to make, and (2) to report a comprehensive ablation study to discuss the impact of each of the choices involved in designing unrolled networks and present practical recommendations based on our findings. We anticipate that this study will help scientists and engineers design unrolled networks for their applications and diagnose problems within their networks efficiently.
Abstract:Snapshot compressive imaging (SCI) recovers high-dimensional (3D) data cubes from a single 2D measurement, enabling diverse applications like video and hyperspectral imaging to go beyond standard techniques in terms of acquisition speed and efficiency. In this paper, we focus on SCI recovery algorithms that employ untrained neural networks (UNNs), such as deep image prior (DIP), to model source structure. Such UNN-based methods are appealing as they have the potential of avoiding the computationally intensive retraining required for different source models and different measurement scenarios. We first develop a theoretical framework for characterizing the performance of such UNN-based methods. The theoretical framework, on the one hand, enables us to optimize the parameters of data-modulating masks, and on the other hand, provides a fundamental connection between the number of data frames that can be recovered from a single measurement to the parameters of the untrained NN. We also employ the recently proposed bagged-deep-image-prior (bagged-DIP) idea to develop SCI Bagged Deep Video Prior (SCI-BDVP) algorithms that address the common challenges faced by standard UNN solutions. Our experimental results show that in video SCI our proposed solution achieves state-of-the-art among UNN methods, and in the case of noisy measurements, it even outperforms supervised solutions.
Abstract:We investigate both the theoretical and algorithmic aspects of likelihood-based methods for recovering a complex-valued signal from multiple sets of measurements, referred to as looks, affected by speckle (multiplicative) noise. Our theoretical contributions include establishing the first existing theoretical upper bound on the Mean Squared Error (MSE) of the maximum likelihood estimator under the deep image prior hypothesis. Our theoretical results capture the dependence of MSE upon the number of parameters in the deep image prior, the number of looks, the signal dimension, and the number of measurements per look. On the algorithmic side, we introduce the concept of bagged Deep Image Priors (Bagged-DIP) and integrate them with projected gradient descent. Furthermore, we show how employing Newton-Schulz algorithm for calculating matrix inverses within the iterations of PGD reduces the computational complexity of the algorithm. We will show that this method achieves the state-of-the-art performance.
Abstract:Snapshot compressive imaging (SCI) systems have gained significant attention in recent years. While previous theoretical studies have primarily focused on the performance analysis of Gaussian masks, practical SCI systems often employ binary-valued masks. Furthermore, recent research has demonstrated that optimized binary masks can significantly enhance system performance. In this paper, we present a comprehensive theoretical characterization of binary masks and their impact on SCI system performance. Initially, we investigate the scenario where the masks are binary and independently identically distributed (iid), revealing a noteworthy finding that aligns with prior numerical results. Specifically, we show that the optimal probability of non-zero elements in the masks is smaller than 0.5. This result provides valuable insights into the design and optimization of binary masks for SCI systems, facilitating further advancements in the field. Additionally, we extend our analysis to characterize the performance of SCI systems where the mask entries are not independent but are generated based on a stationary first-order Markov process. Overall, our theoretical framework offers a comprehensive understanding of the performance implications associated with binary masks in SCI systems.
Abstract:We show that a collection of Gaussian mixture models (GMMs) in $R^{n}$ can be optimally classified using $O(n)$ neurons in a neural network with two hidden layers (deep neural network), whereas in contrast, a neural network with a single hidden layer (shallow neural network) would require at least $O(\exp(n))$ neurons or possibly exponentially large coefficients. Given the universality of the Gaussian distribution in the feature spaces of data, e.g., in speech, image and text, our result sheds light on the observed efficiency of deep neural networks in practical classification problems.
Abstract:Clustering mixtures of Gaussian distributions is a fundamental and challenging problem that is ubiquitous in various high-dimensional data processing tasks. While state-of-the-art work on learning Gaussian mixture models has focused primarily on improving separation bounds and their generalization to arbitrary classes of mixture models, less emphasis has been paid to practical computational efficiency of the proposed solutions. In this paper, we propose a novel and highly efficient clustering algorithm for $n$ points drawn from a mixture of two arbitrary Gaussian distributions in $\mathbb{R}^p$. The algorithm involves performing random 1-dimensional projections until a direction is found that yields a user-specified clustering error $e$. For a 1-dimensional separation parameter $\gamma$ satisfying $\gamma=Q^{-1}(e)$, the expected number of such projections is shown to be bounded by $o(\ln p)$, when $\gamma$ satisfies $\gamma\leq c\sqrt{\ln{\ln{p}}}$, with $c$ as the separability parameter of the two Gaussians in $\mathbb{R}^p$. Consequently, the expected overall running time of the algorithm is linear in $n$ and quasi-linear in $p$ at $o(\ln{p})O(np)$, and the sample complexity is independent of $p$. This result stands in contrast to prior works which provide polynomial, with at-best quadratic, running time in $p$ and $n$. We show that our bound on the expected number of 1-dimensional projections extends to the case of three or more Gaussian components, and we present a generalization of our results to mixture distributions beyond the Gaussian model.