Abstract:Snapshot Compressive Imaging (SCI) maps three-dimensional (3D) data cubes, such as videos or hyperspectral images, into two-dimensional (2D) measurements via optical modulation, enabling efficient data acquisition and reconstruction. Recent advances have shown the potential of mask optimization to enhance SCI performance, but most studies overlook nonlinear distortions caused by saturation in practical systems. Saturation occurs when high-intensity measurements exceed the sensor's dynamic range, leading to information loss that standard reconstruction algorithms cannot fully recover. This paper addresses the challenge of optimizing binary masks in SCI under saturation. We theoretically characterize the performance of compression-based SCI recovery in the presence of saturation and leverage these insights to optimize masks for such conditions. Our analysis reveals trade-offs between mask statistics and reconstruction quality in saturated systems. Experimental results using a Plug-and-Play (PnP) style network validate the theory, demonstrating improved recovery performance and robustness to saturation with our optimized binary masks.
Abstract:Snapshot compressive imaging (SCI) refers to the recovery of three-dimensional data cubes-such as videos or hyperspectral images-from their two-dimensional projections, which are generated by a special encoding of the data with a mask. SCI systems commonly use binary-valued masks that follow certain physical constraints. Optimizing these masks subject to these constraints is expected to improve system performance. However, prior theoretical work on SCI systems focuses solely on independently and identically distributed (i.i.d.) Gaussian masks, which do not permit such optimization. On the other hand, existing practical mask optimizations rely on computationally intensive joint optimizations that provide limited insight into the role of masks and are expected to be sub-optimal due to the non-convexity and complexity of the optimization. In this paper, we analytically characterize the performance of SCI systems employing binary masks and leverage our analysis to optimize hardware parameters. Our findings provide a comprehensive and fundamental understanding of the role of binary masks - with both independent and dependent elements - and their optimization. We also present simulation results that confirm our theoretical findings and further illuminate different aspects of mask design.
Abstract:Snapshot compressive imaging (SCI) recovers high-dimensional (3D) data cubes from a single 2D measurement, enabling diverse applications like video and hyperspectral imaging to go beyond standard techniques in terms of acquisition speed and efficiency. In this paper, we focus on SCI recovery algorithms that employ untrained neural networks (UNNs), such as deep image prior (DIP), to model source structure. Such UNN-based methods are appealing as they have the potential of avoiding the computationally intensive retraining required for different source models and different measurement scenarios. We first develop a theoretical framework for characterizing the performance of such UNN-based methods. The theoretical framework, on the one hand, enables us to optimize the parameters of data-modulating masks, and on the other hand, provides a fundamental connection between the number of data frames that can be recovered from a single measurement to the parameters of the untrained NN. We also employ the recently proposed bagged-deep-image-prior (bagged-DIP) idea to develop SCI Bagged Deep Video Prior (SCI-BDVP) algorithms that address the common challenges faced by standard UNN solutions. Our experimental results show that in video SCI our proposed solution achieves state-of-the-art among UNN methods, and in the case of noisy measurements, it even outperforms supervised solutions.
Abstract:Snapshot compressive imaging (SCI) systems have gained significant attention in recent years. While previous theoretical studies have primarily focused on the performance analysis of Gaussian masks, practical SCI systems often employ binary-valued masks. Furthermore, recent research has demonstrated that optimized binary masks can significantly enhance system performance. In this paper, we present a comprehensive theoretical characterization of binary masks and their impact on SCI system performance. Initially, we investigate the scenario where the masks are binary and independently identically distributed (iid), revealing a noteworthy finding that aligns with prior numerical results. Specifically, we show that the optimal probability of non-zero elements in the masks is smaller than 0.5. This result provides valuable insights into the design and optimization of binary masks for SCI systems, facilitating further advancements in the field. Additionally, we extend our analysis to characterize the performance of SCI systems where the mask entries are not independent but are generated based on a stationary first-order Markov process. Overall, our theoretical framework offers a comprehensive understanding of the performance implications associated with binary masks in SCI systems.
Abstract:Constraint solving is an elementary way for verification of deep neural networks (DNN). In the domain of AI safety, a DNN might be modified in its structure and parameters for its repair or attack. For such situations, we propose the incremental DNN verification problem, which asks whether a safety property still holds after the DNN is modified. To solve the problem, we present an incremental satisfiability modulo theory (SMT) algorithm based on the Reluplex framework. We simulate the most important features of the configurations that infers the verification result of the searching branches in the old solving procedure (with respect to the original network), and heuristically check whether the proofs are still valid for the modified DNN. We implement our algorithm as an incremental solver called DeepInc, and exerimental results show that DeepInc is more efficient in most cases. For the cases that the property holds both before and after modification, the acceleration can be faster by several orders of magnitude, showing that DeepInc is outstanding in incrementally searching for counterexamples. Moreover, based on the framework, we propose the multi-objective DNN repair problem and give an algorithm based on our incremental SMT solving algorithm. Our repair method preserves more potential safety properties on the repaired DNNs compared with state-of-the-art.