Abstract:Large vision-language models (LVLMs) have made substantial progress in integrating large language models (LLMs) with visual inputs, enabling advanced multimodal reasoning. Despite their success, a persistent challenge is hallucination-where generated text fails to accurately reflect visual content-undermining both accuracy and reliability. Existing methods focus on alignment training or decoding refinements but primarily address symptoms at the generation stage without probing the underlying causes. In this work, we investigate the internal mechanisms driving hallucination in LVLMs, with an emphasis on the multi-head attention module. Specifically, we introduce Vision-aware Head Divergence (VHD), a metric that quantifies the sensitivity of attention head outputs to visual context. Based on this, our findings reveal the presence of vision-aware attention heads that are more attuned to visual information; however, the model's overreliance on its prior language patterns is closely related to hallucinations. Building on these insights, we propose Vision-aware Head Reinforcement (VHR), a training-free approach to mitigate hallucination by enhancing the role of vision-aware attention heads. Extensive experiments demonstrate that our method achieves superior performance compared to state-of-the-art approaches in mitigating hallucinations, while maintaining high efficiency with negligible additional time overhead.
Abstract:Lane detection plays an important role in autonomous driving perception systems. As deep learning algorithms gain popularity, monocular lane detection methods based on deep learning have demonstrated superior performance and emerged as a key research direction in autonomous driving perception. The core design of these algorithmic frameworks can be summarized as follows: (1) Task paradigm, focusing on lane instance-level discrimination; (2) Lane modeling, representing lanes as a set of learnable parameters in the neural network; (3) Global context supplementation, enhancing the detection of obscure lanes; (4) Perspective effect elimination, providing 3D lanes usable for downstream applications. From these perspectives, this paper presents a comprehensive overview of existing methods, encompassing both the increasingly mature 2D lane detection approaches and the developing 3D lane detection works. For a relatively fair comparison, in addition to comparing the performance of mainstream methods on different benchmarks, their inference speed is also investigated under a unified setting. Moreover, we present some extended works on lane detection, including multi-task perception, video lane detection, online high-definition map construction, and lane topology reasoning, to offer readers a comprehensive roadmap for the evolution of lane detection. Finally, we point out some potential future research directions in this field. We exhaustively collect the papers and codes of existing works at https://github.com/Core9724/Awesome-Lane-Detection and will keep tracing the research.
Abstract:Continual learning (CL) is crucial for language models to dynamically adapt to the evolving real-world demands. To mitigate the catastrophic forgetting problem in CL, data replay has been proven a simple and effective strategy, and the subsequent data-replay-based distillation can further enhance the performance. However, existing methods fail to fully exploit the knowledge embedded in models from previous tasks, resulting in the need for a relatively large number of replay samples to achieve good results. In this work, we first explore and emphasize the importance of attention weights in knowledge retention, and then propose a SElective attEntion-guided Knowledge Retention method (SEEKR) for data-efficient replay-based continual learning of large language models (LLMs). Specifically, SEEKR performs attention distillation on the selected attention heads for finer-grained knowledge retention, where the proposed forgettability-based and task-sensitivity-based measures are used to identify the most valuable attention heads. Experimental results on two continual learning benchmarks for LLMs demonstrate the superiority of SEEKR over the existing methods on both performance and efficiency. Explicitly, SEEKR achieves comparable or even better performance with only 1/10 of the replayed data used by other methods, and reduces the proportion of replayed data to 1%.
Abstract:Imaging through scattering media is a fundamental and pervasive challenge in fields ranging from medical diagnostics to astronomy. A promising strategy to overcome this challenge is wavefront modulation, which induces measurement diversity during image acquisition. Despite its importance, designing optimal wavefront modulations to image through scattering remains under-explored. This paper introduces a novel learning-based framework to address the gap. Our approach jointly optimizes wavefront modulations and a computationally lightweight feedforward "proxy" reconstruction network. This network is trained to recover scenes obscured by scattering, using measurements that are modified by these modulations. The learned modulations produced by our framework generalize effectively to unseen scattering scenarios and exhibit remarkable versatility. During deployment, the learned modulations can be decoupled from the proxy network to augment other more computationally expensive restoration algorithms. Through extensive experiments, we demonstrate our approach significantly advances the state of the art in imaging through scattering media. Our project webpage is at https://wavemo-2024.github.io/.
Abstract:Instruction tuning is now a widely adopted approach to aligning large multimodal models (LMMs) to follow human intent. It unifies the data format of vision-language tasks, enabling multi-task joint training. However, vision-language tasks are constantly being created in practice. Instead of always re-training LMMs when new tasks arrive, continual learning offers flexibility for models to continually and efficiently exploit the evolving data. This work aims to explore the following two questions: 1) Do LMMs still suffer from catastrophic forgetting in continual instruction tuning? 2) Are the existing three classes of continual learning methods still applicable to the continual instruction tuning of LMMs? An extensive study is conducted to address the above questions. First, we establish the first benchmark in this setting and reveal that catastrophic forgetting is still observed when continually instruction-tuning LMMs. However, the multi-task joint instruction tuning can facilitate the model's continual learning ability and mitigate forgetting. Second, we integrate and adapt classic continual learning methods to our context, demonstrating the efficacy of data replay and model expansion strategies across diverse scenarios. In contrast, regularization-based methods only perform well on models that have been jointly instruction-tuned on multiple tasks. Third, we delve into the correlation and forgetting dynamics between vision-language task pairs and propose task-similarity-informed regularization and model expansion methods for continual instruction tuning of LMMs. Experimental results show that our approach consistently boosts the model's performance.
Abstract:Image stacks provide invaluable 3D information in various biological and pathological imaging applications. Fourier ptychographic microscopy (FPM) enables reconstructing high-resolution, wide field-of-view image stacks without z-stack scanning, thus significantly accelerating image acquisition. However, existing FPM methods take tens of minutes to reconstruct and gigabytes of memory to store a high-resolution volumetric scene, impeding fast gigapixel-scale remote digital pathology. While deep learning approaches have been explored to address this challenge, existing methods poorly generalize to novel datasets and can produce unreliable hallucinations. This work presents FPM-INR, a compact and efficient framework that integrates physics-based optical models with implicit neural representations (INR) to represent and reconstruct FPM image stacks. FPM-INR is agnostic to system design or sample types and does not require external training data. In our demonstrated experiments, FPM-INR substantially outperforms traditional FPM algorithms with up to a 25-fold increase in speed and an 80-fold reduction in memory usage for continuous image stack representations.
Abstract:Background subtraction (BGS) aims to extract all moving objects in the video frames to obtain binary foreground segmentation masks. Deep learning has been widely used in this field. Compared with supervised-based BGS methods, unsupervised methods have better generalization. However, previous unsupervised deep learning BGS algorithms perform poorly in sophisticated scenarios such as shadows or night lights, and they cannot detect objects outside the pre-defined categories. In this work, we propose an unsupervised BGS algorithm based on zero-shot object detection called Zero-shot Background Subtraction (ZBS). The proposed method fully utilizes the advantages of zero-shot object detection to build the open-vocabulary instance-level background model. Based on it, the foreground can be effectively extracted by comparing the detection results of new frames with the background model. ZBS performs well for sophisticated scenarios, and it has rich and extensible categories. Furthermore, our method can easily generalize to other tasks, such as abandoned object detection in unseen environments. We experimentally show that ZBS surpasses state-of-the-art unsupervised BGS methods by 4.70% F-Measure on the CDnet 2014 dataset. The code is released at https://github.com/CASIA-IVA-Lab/ZBS.
Abstract:In person re-identification (ReID), very recent researches have validated pre-training the models on unlabelled person images is much better than on ImageNet. However, these researches directly apply the existing self-supervised learning (SSL) methods designed for image classification to ReID without any adaption in the framework. These SSL methods match the outputs of local views (e.g., red T-shirt, blue shorts) to those of the global views at the same time, losing lots of details. In this paper, we propose a ReID-specific pre-training method, Part-Aware Self-Supervised pre-training (PASS), which can generate part-level features to offer fine-grained information and is more suitable for ReID. PASS divides the images into several local areas, and the local views randomly cropped from each area are assigned with a specific learnable [PART] token. On the other hand, the [PART]s of all local areas are also appended to the global views. PASS learns to match the output of the local views and global views on the same [PART]. That is, the learned [PART] of the local views from a local area is only matched with the corresponding [PART] learned from the global views. As a result, each [PART] can focus on a specific local area of the image and extracts fine-grained information of this area. Experiments show PASS sets the new state-of-the-art performances on Market1501 and MSMT17 on various ReID tasks, e.g., vanilla ViT-S/16 pre-trained by PASS achieves 92.2\%/90.2\%/88.5\% mAP accuracy on Market1501 for supervised/UDA/USL ReID. Our codes are available at https://github.com/CASIA-IVA-Lab/PASS-reID.
Abstract:Transformer is showing its superiority over convolutional architectures in many vision tasks like image classification and object detection. However, the lacking of an explicit alignment mechanism limits its capability in person re-identification (re-ID), in which there are inevitable misalignment issues caused by pose/viewpoints variations, etc. On the other hand, the alignment paradigm of convolutional neural networks does not perform well in Transformer in our experiments. To address this problem, we develop a novel alignment framework for Transformer through adding the learnable vectors of "part tokens" to learn the part representations and integrating the part alignment into the self-attention. A part token only interacts with a subset of patch embeddings and learns to represent this subset. Based on the framework, we design an online Auto-Aligned Transformer (AAformer) to adaptively assign the patch embeddings of the same semantics to the identical part token in the running time. The part tokens can be regarded as the part prototypes, and a fast variant of Sinkhorn-Knopp algorithm is employed to cluster the patch embeddings to part tokens online. AAformer can be viewed as a new principled formulation for simultaneously learning both part alignment and part representations. Extensive experiments validate the effectiveness of part tokens and the superiority of AAformer over various state-of-the-art CNN-based methods. Our codes will be released.
Abstract:Existing alignment-based methods have to employ the pretrained human parsing models to achieve the pixel-level alignment, and cannot identify the personal belongings (e.g., backpacks and reticule) which are crucial to person re-ID. In this paper, we propose the identity-guided human semantic parsing approach (ISP) to locate both the human body parts and personal belongings at pixel-level for aligned person re-ID only with person identity labels. We design the cascaded clustering on feature maps to generate the pseudo-labels of human parts. Specifically, for the pixels of all images of a person, we first group them to foreground or background and then group the foreground pixels to human parts. The cluster assignments are subsequently used as pseudo-labels of human parts to supervise the part estimation and ISP iteratively learns the feature maps and groups them. Finally, local features of both human body parts and personal belongings are obtained according to the selflearned part estimation, and only features of visible parts are utilized for the retrieval. Extensive experiments on three widely used datasets validate the superiority of ISP over lots of state-of-the-art methods. Our code is available at https://github.com/CASIA-IVA-Lab/ISP-reID.